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Noise radiation of rotating tires

Noise radiation

The simulation of the sound radiation requires the solution of the Helmholtz
equation

∆u + k2u = 0
on the exterior of the domain occupied by the tire for a particular set of wave
numbers k = ωk/c, c - speed of sound.

ωk are obtained by Fourier analysis of the transient excitation forces
f (t) ≈

∑
k fk eiωk t such as an impact of the roughness of the road surface or

the tread pattern.

Figure: Acoustic model of a tire.
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Noise radiation of rotating tires

Boundary conditions

Sommerfeld radiation condition∣∣∣∣∂u
∂r

− iku
∣∣∣∣ ≤ C

r2 (1)

is assumed for large r .

On the outer boundary of the tire the normal velocities of the tire for the
particular frequency ωk are prescribed as an excitation.

Discretization of ALE model by finite elements yields the transient equation of
motion

Mü + Gu̇ + Ku = f (t), (2)

where M = MT is the mass matrix, G = −GT is the gyroscopic matrix and
K = K T is the stiffness matrix modified by the inertia forces due to the
stationary rolling.

Marta Betcke A local restart for symmetric NEVP 22nd March 2007 3 / 26



Noise radiation of rotating tires

Boundary conditions

Sommerfeld radiation condition∣∣∣∣∂u
∂r

− iku
∣∣∣∣ ≤ C

r2 (1)

is assumed for large r .

On the outer boundary of the tire the normal velocities of the tire for the
particular frequency ωk are prescribed as an excitation.

Discretization of ALE model by finite elements yields the transient equation of
motion
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Noise radiation of rotating tires

Gyroscopic eigenvalue problem

Assuming the modal superposition uk ≈ ũk = Xzk , an approximation to the
normal velocities for the particular frequency ωk can be extracted from the
projected equation

−ω2
k X ∗MXzk + iωk X ∗GXzk + X ∗K Xzk = X ∗fk ,

where the right hand side is a vector of spectral amplitudes of modal
excitation forces for a frequency ωk .

Gyroscopic eigenvalue problem

−λ2Mx + iλGx + K x = 0,

In practice only the eigenmodes with frequencies close to the sought
frequency ωk are used which corresponds to the range up to 2000 Hz.
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Nonlinear eigenvalue problem

Nonlinear Eigenvalue problem

We consider a nonlinear eigenvalue problem

T (λ)x = 0

where T (λ) ∈ Cnxn large, sparse and T (λ) = T (λ)∗ for every λ in an open real
interval J.

We assume that for every fixed x 6= 0 the real function

f (λ; x) := x∗T (λ)x

is continuously differentiable on J, and that the equation

f (λ; x) = 0 (3)

has at most one solution in J.

Definition
Then equation (3) implicitly defines a functional p on some subset D of
Cn \ {0} which we call the Rayleigh functional.
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Nonlinear eigenvalue problem

Eigenvalue enumeration

In general the natural enumeration is not appropriate but:

Lemma

If λ is an eigenvalue of T (λ)x = 0 then µ = 0 is an eigenvalue of T (λ)y = µy.

Therefore ∃k ∈ N such that

0 = max
W∈Sk

min
w∈W1

w∗T (λ)w

Sk : set of all k -dimensional subspaces of Cn

W1 := {w ∈ W : ‖w‖ = 1} is the unit sphere in W.

Definition

In this case we call λ a k th eigenvalue of T (λ)x = 0.
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Nonlinear eigenvalue problem

Minmax characterization

Theorem (Voss, Werner 82)

Let p : D → J be the Rayleigh functional and assume that
x∗T ′(p(x))x > 0 for every x ∈ D. Then it holds:

(i) For every k ∈ N there is at most one k-th eigenvalue of problem
T (λ)x = 0 which can be characterized by

λk = min
W∈Sk ,

W∩D 6=∅

sup
w∈W∩D

p(w). (4)

Hence, there are at most n eigenvalues of T (λ)x = 0 in J.
(ii) If λ ∈ J and k ∈ N such that kth eigenvalue of T (λ)x = 0, λk ∈ J. Then it

holds

λ

 >
=
<

 λk ⇐⇒ µk (λ) := max
W∈Sk

min
w∈W1

w∗T (λ)w

 >
=
<

 0.
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Solution of NEVP

Safeguarded Iteration

Safeguarded iteration is a fix-point iteration. It aims for an eigenvalue with a
particular number k

Require: α1 an approximation to the k th eigenvalue
for i = 1, . . . until convergence do

Determine an eigenvector xi corresponding to the k th largest eigenvalue
of T (αi)
Solve x∗i T (αi+1)xi = 0 for αi+1

end for

Convergence properties:
Global quadratic convergence to λ1 ∈ J
If λk is an simple eigenvalue local quadratic convergence to λk

If T ′(λ) is positive definite and xi is replaced by the k th eigenvector of
T (αi)x = κT ′(αi)x then the convergence is even cubic.
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Solution of NEVP

Subspace expansion

Jacobi Davidson
Residual Inverse Iteration

t = T (σ)−1T (λk )uk (5)

For the linear problem T (λ) = A− λB this is exactly a Cayley transform

(A− σB)−1(A− λB) = I + (σ − λ)(A− σB)−1B

and therefore equivalent to the shift-invert Arnoldi method.

If the linear system T (σ)t = T (λ)u is too expensive to solve we can
choose a new direction as

t = M−1T (λ)u with M ≈ T (σ).

For the linear problem this again corresponds to the inexact Cayley
transform.
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Solution of NEVP

Nonlinear Arnoldi

Require: m ≥ 1, V , V ∗V = I, σ, M ≈ T (σ)−1

while m ≤ number of wanted eigenvalues do
Compute mth eigenpair (µ, y) of TV (·)y := V ∗T (·)Vy
u = Vy and r = T (µ)u
if ‖r‖/‖u‖ < ε then

ACCEPT (λm, xm) = (µ, u)
m = m + 1
Update σ and M ≈ T (σ)−1 if necessary
RESTART if necessary

end if
v = Mr , v = v − VV ∗v , ṽ = v/‖v‖, V = [V , ṽ ]
Reorthogonalize if necessary
Update TV (·) = V ∗T (·)V

end while

Marta Betcke A local restart for symmetric NEVP 22nd March 2007 11 / 26



Solution of NEVP

Nonlinear Arnoldi

Require: m ≥ 1, V , V ∗V = I, σ, M ≈ T (σ)−1

while m ≤ number of wanted eigenvalues do
Compute mth eigenpair (µ, y) of TV (·)y := V ∗T (·)Vy
u = Vy and r = T (µ)u
if ‖r‖/‖u‖ < ε then

ACCEPT (λm, xm) = (µ, u)
m = m + 1
Update σ and M ≈ T (σ)−1 if necessary
RESTART if necessary

end if
v = Mr , v = v − VV ∗v , ṽ = v/‖v‖, V = [V , ṽ ]
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Solution of NEVP

Solid rubber wheel

The wheel is pressed on the track and is rotating at a rate of 50Hz (1728
DOFs).

Marta Betcke A local restart for symmetric NEVP 22nd March 2007 12 / 26



Solution of NEVP

Nonlinear Arnoldi with global restarts
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Local restart

Local numbering

Let (λ̂, x̂) an eigenpair of T (λ)x = 0. We call λ̂ an anchor.

Let V ⊂ Cn : x̂ ∈ V and V be its orthogonal basis.

Then λ̂ is also an eigenvalue of the projected problem

TV (λ̂)y := V ∗T (λ̂)Vy = 0. (6)

Since TV (·) satisfies the conditions of Theorem 4 we can assign to λ̂
a local number ` = `(V) in the following way:

λ̂ is an `th eigenvalue of problem TV (λ)y = 0 if µ(λ̂) = 0 is the ` largest

eigenvalue of the linear problem

TV (λ̂)y = µ(λ̂)y . (7)
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Local restart

Local numbering ...

In the course of iterative method subspaces are generated

V0 ⊂ V1 ⊂ V2 ⊂ . . .⊂Vk .

In k th step enumerate the eigenvalues within Vk locally from the anchor

λ̂ =: λ`(Vk ), λ`(Vk )+1, . . .

Generate Vk+1 aiming at the (`(Vk ) + 1)st eigenvalue

After convergence we may continue the iterative projection method aiming at
the (`(Vk ′) + 2)nd eigenvalue.

Or we may replace the anchor by the newly converged eigenpair.

Marta Betcke A local restart for symmetric NEVP 22nd March 2007 15 / 26



Local restart

Local numbering ...

In the course of iterative method subspaces are generated

V0 ⊂ V1 ⊂ V2 ⊂ . . .⊂Vk .

In k th step enumerate the eigenvalues within Vk locally from the anchor

λ̂ =: λ`(Vk ), λ`(Vk )+1, . . .

Generate Vk+1 aiming at the (`(Vk ) + 1)st eigenvalue

After convergence we may continue the iterative projection method aiming at
the (`(Vk ′) + 2)nd eigenvalue.

Or we may replace the anchor by the newly converged eigenpair.

Marta Betcke A local restart for symmetric NEVP 22nd March 2007 15 / 26



Local restart

Local numbering ...

In the course of iterative method subspaces are generated

V0 ⊂ V1 ⊂ V2 ⊂ . . .⊂Vk .

In k th step enumerate the eigenvalues within Vk locally from the anchor

λ̂ =: λ`(Vk ), λ`(Vk )+1, . . .

Generate Vk+1 aiming at the (`(Vk ) + 1)st eigenvalue

After convergence we may continue the iterative projection method aiming at
the (`(Vk ′) + 2)nd eigenvalue.

Or we may replace the anchor by the newly converged eigenpair.

Marta Betcke A local restart for symmetric NEVP 22nd March 2007 15 / 26



Local restart

Restart framework

Require: Preconditioner M ≈ T (σ)−1 for a suitable shift σ,
Require: (λi , xi) an (approximate) eigenpair of T (·)
Require: v1 an approximation to xi+1

1: V = [xi , v1];
2: j = 1;
3: while Restart condition not satisfied do
4: repeat
5: Determine largest eigenvalues µ1(λi) ≥ · · · ≥ µk (λi) > 0 ≥ µk+1(λi)

of TV (λi)
6: Set ` := k if µk ≤ −µk+1, and else ` := k + 1
7: Compute (` + j)th eigenpair (λ̃`+j , y`+j) of TV (·)
8: Expand V aiming at (λ`+j , x`+j)

9: until Eigenpair (λ̃`+j , Vyl+j) =: (λi+j , xi+j) converged
10: j = j+1;
11: end while
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Spurious eigenvalues

Spurious eigenvalues

Eigenvalues of T (·) in [λi , λi+j ]:

λ̂ =: λi , λi+1, . . . , λi+j , λn+j+1

Eigenvalues of TV (·) in [λi , λi+j ] ideally:

λ̂ =: λ`(Vk ), λ`(Vk )+1, . . . , λ`(Vk )+j , λ`(Vk )+j+1

But it may happen

λ̂ =: λ`(Vk ), λ`(Vk )+1, . . . , θ =: λ`(Vk )+m, . . . , λ`(Vk )+j , λ`(Vk )+j+1

Spurious eigenvalues temporarily arise in the search subspace which are
linear combinations of the eigenvalues outside of the part of the spectrum
covered by Vk .

Local number of λi+j is raised by 1, and λi+j is accepted as an (i + j + 1)st
eigenvalue.
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Spurious eigenvalues

Workaround

In the course of the computation it may happen that the algorithm converges
to an eigenvalue twice

λi < λi+1 < · · · < λi+j ≈ λi+j+1

Possible reasons:
1 The eigenvalue is a multiple (at least double) eigenvalue; e.g. check

∠(xi+j , xi+j+1)
2 An eigenvalue in [λi , λi+j ] has been previously missed out;
3 A spurious eigenvalue arose in the interval [λi , λi+j ].

In cases 2,3 the local number of λi+j is raised by 1, and λi+j is accepted as an
(i + j + 1)th eigenvalue.

In both cases we determine the additional eigenvalue θ (“suspect”) and its
local number ` + m and we expand the search space

V̂ = span{V, MT (θ)xθ}

aiming at the corresponding Ritz pair (θ, xθ).
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aiming at the corresponding Ritz pair (θ, xθ).
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Spurious eigenvalues

Workaround
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Spurious eigenvalues

Workaround ...

By the minmax principle all eigenvalues of the projected problem TV̂ (λ)ŷ = 0
are less than or equal to the corresponding ones of TV (λ)y = 0.

Either of the following happens:
TV̂ (·) has exactly j + 1 eigenvalues in [λi , λi+j ] i.e. the additional
eigenvalue has left the interval of interest;

There still are j + 2 eigenvalues λi , . . . , λi+j , θ̂ ∈ [λi , λi+j ], and it holds
θ̂ ≤ θ.

‖T (θ̂)V̂ xθ̂‖ is small ⇒ the additional eigenvalue converged. Then we adjust
the enumeration and continue the iterative method;
Otherwise we repeat the expansion of the subspace until the sequence of
additional eigenvalues has been moved out of the interval [λi , λi+j ] or has
converged to a previously missed out regular eigenvalue.
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Spurious eigenvalues

Workaround ...

If more than one additional eigenvalue exist in [λi , λi+j ] after we detected a
replicate eigenvalue they all can be treated in the way one after the other.

We identify the suspect eigenvalue by assigning the numbers of the
eigenvalues in λi , . . . , λi+j of T (λ)x = 0 within the actual search subspace V.
The not matched eigenvalues of the projected problem TV (λ)x = 0 are
suspect.

In practice the search subspace V usually contains approximations rather
than the exact eigenvectors. Thus while identifying the nonlinear eigenvalue
λi we assign the number of the eigenvalue µ(λi) of the linear problem TV (λi)
with minimal absolute value.
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Does it work?

Nonlinear Arnoldi with local restarts
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Does it work?

Nonlinear Arnoldi with balanced local restarts
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Does it work?

205/55R16-91H tire, Continental AG

19 different materials are used in the finite element model. The model
includes the stress approximating the air pressure in the tire. The tire is
pressed on the track and is rotating at a rate corresponding to a vehicle speed
of 50 km/h.
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Does it work?

Balanced vs. non-balanced restarts

Tests run on a single processor of SGI Altix 4700 machine with 96 Itanium 2
Madison 9M processors (1.6GHz, 6MB L3, single core) sharing 320 GB RAM.

We implemented the algorithm in Fortran 90 using the standard linear algebra
packages BLAS and LAPACK from SCSL hardware optimized library and
SPARSKIT2. The LU decompositions and subsequent system solves are
computed with the PARDISO routines from the Intel MKL library.

CPU times for the computation of all eigenfrequencies in the range
[475, 2000]Hz without and with balanced restarts.

MAX_DIM CPU time [h] # LU
N.Arn. 230 4.02 5
Balanced N.Arn. 230 2.83 8
N.Arn. 200 3.46 6
Balanced N.Arn. 200 2.84 8
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Does it work?

NA with balanced restarts

Figure: CPU time for the computation of eigenfrequencies of the tire 205/55R16-91H in
the range [475, 2001]Hz by the Nonlinear Arnoldi method with balanced local restarts.
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Does it work?

Conclusions

We have a local restart technique for nonlinear eigenvalue problems
admitting minmax characterization which effectively prevents the
superlinear growth with the eigenvalue number

It can be used within different iterative methods

It can be used to compute eigenvalues in the interior of the spectrum if it
can be initialized

We developed strategies for dealing with spurious eigenvalues

The approach can be generalized to rational eigenvalue problems where
the numbering is not unique on the real axis.
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