

Non-Linear Aeroelastic Modelling and Prediction

Jonathan Cooper, Greg Dimitriadis and Gareth Vio School of Mechanical, Aerospace and Civil Engineering University of Manchester

Outline

- The University of Manchester
- Overview of Aeroelasticity
- Outline of several aeroelastic phenomena
 - Flutter
 - Prediction of stability bounds
- Effect of non-linearities
 - Structural
 - Aerodynamic
 - Control system
- Limit Cycle Oscillations
 - Determination of LCO characteristics
- Future Directions

104 Years Ago in the USA

Wright brothers were perfecting their "Flyer" at Kitty Hawk.

Samuel Langley, backed by the Smithsonian Institute, attempted to fly his "Aerodrome" off a houseboat on the Potomac River.

Langley's Tests

• Structural failure

Wright Brothers

Success Wing warping for roll control

Langley - First Known Aeroelastic Failure

- Wings were not stiff enough
- "Divergence" torsional loads overcome structural restoring forces
- "Aerodrome" rebuilt some years later by Curtis with stiffer wings it flew
- Interaction of flexible structure and aerodynamic forces need to be considered
- Science of Aeroelasticity

Aeroelastic Phenomena

- Mostly undesirable
- Often catastrophic
 - Flutter / Divergence
- Response

MANCHESTER

- Gusts / Manoeuvres / Control surface inputs
- Buffet
- Linear and non-linear response
- Key criteria for aircraft design and certification
 - Many (1000s) of cases need to be considered
- Still unable to accurately predict some types of behaviour

F-18 HARV Smoke Test late 1980's Dryden Flight Research Center

- 2nd order differential equation cf. $M \otimes + C \otimes + Kx = 0$
- Stiffness and damping change with speed and height
- Matrices of order 80 x 80
- Right hand side for gusts / control inputs

Flutter

- Violent unstable vibration often resulting in structural failure
- Two modes interact with each other

Aeroelasticity at its Worst

Flight Research Cen **SP** April 24, 2001

MANCHESTER Prediction of Aeroelastic Stability

Aeroelastic equations

$$\mathbf{A}\mathbf{\Phi} + (\rho \mathbf{V}\mathbf{B} + \mathbf{D})\mathbf{\Phi} + (\rho \mathbf{V}^{2}\mathbf{C} + \mathbf{E})\mathbf{q} = \mathbf{0}$$

• First order form

$$\left\{ \underbrace{\underline{\mathbf{q}}}_{\underline{\mathbf{q}}} \right\} - \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{A}^{-1} \left(\rho \mathbf{V}^2 \mathbf{C} + \mathbf{E} \right) & -\mathbf{A}^{-1} \left(\rho \mathbf{V} \mathbf{B} + \mathbf{D} \right) \end{bmatrix} \left\{ \underbrace{\underline{\mathbf{q}}}_{\underline{\mathbf{q}}} \right\} = \underline{\mathbf{0}}$$

Eigenvalue problem

• Eigenvalues of Q

$$\lambda_{j} = -\zeta_{j}\omega_{j} \pm i\omega_{j}\sqrt{1-\zeta_{j}^{2}}$$
 $j=1, 2\mathbf{K}N$

Unsteady Aerodynamics

Steady lift
 proportional to angle
 of incidence

Consider sudden
 change in incidence

Effect of Harmonic Motion

Oscillatory motion of aerofoil

 Lift depends upon the reduced frequency

$$k = \frac{\omega b}{V} = \frac{\omega c}{2V}$$

B and C are reduced frequency dependent

Manchester 2007 Non-Linear Eigenvalue Problems.

Frequency Matching

- Aeroelastic equations $A \frac{q}{P} + (\rho V B + D) \frac{q}{P} + (\rho V^2 C + E) \underline{q} = \underline{0}$
- If A,B,C,D,E are known
 - Typically using "panel methods"
 - Find ω and ζ from eigen problem
- But, need to know ω and ζ
 - To find B and C
- "Chicken and Egg" situation
 - Frequency matching problem
 - Consider individual harmonics

The University of Manchester

PK Method

At each speed and frequency

- Guess frequency
- Calculate B and C
- Solve eigenproblem
- Repeat process with new frequency
- Exact at flutter condition
- Sub-critical behaviour not exact

Control Surface Flutter

- Interaction of control surface and wing
- F-117 Stealth Fighter
 - Freeplay of control surfaces

The University of Manchester Non-Linear Eigenvalue Problems. Manchester 2007

Effect of Non-Linearities

Non-linear phenomena change aeroelastic behaviour

- Structural
 - Cubic stiffening joints
 - Freeplay control surfaces
- Aerodynamic
 - Transonic behaviour
 - Moving shocks
 - Stall flutter
- Control
 - Control surface rate and deflection limits
 - Control circuit time delays

Need high fidelity aerodynamics to model accurately

Limit Cycle Oscillations

- Non-linearities cause a bounded flutter to occur
- Not disastrous
 - Fatigue problem
 - Other problems
 - weapon aiming
 - pilot control

MANCHESTER 1824 Typical Parameter Space Behaviour

The University Non-Linear Eigenvalue Problems. Manchester 2007

Non-Linear Eigenvalue Problems. Manchester 2007

Limit Cycle Oscillations

- Interaction of control surface and wing
- Example here is limited amplitude
 - Limit Cycle Oscillation (LCO)

Stall Flutter

- If angle of incidence gets too high
 - Flow separates
 - Lift is lost
 - Incidence reduces
 - Flow reattaches
 - Incidence increases
- LCO results
- Occurs at wing tips

 V		ļ

Military Aircraft with Stores

- Cannot predict LCO using current methods
- Problems if
 unpredicted vibration
 occurs in flight test
- Lots of (expensive) testing needed

Prediction of Stability Boundaries and Characteristics

- Possible to compute coupled FE/CFD models but very expensive in transonic region
- Many design cases need to be considered
- Aim to use non-linear dynamics methods to determine regions of interest
- Direct interesting areas where the FE/CFD analysis should be used
- Interested in
 - Stability boundaries
 - Amplitudes
 - Frequencies

Non-Linear Aeroelastic Prediction

- **Continuous Non-linearities (Normal Form)**
 - structural and aerodynamic non-linearities
 - determination of LCO frequencies and amplitudes
- Discontinuous Non-linearities (Normal Form / Harmonic Balance methods / Cell Mapping / numerical continuation)
 - structural and control system non-linearities

MANCHESTER

Aeroelastic Equations of Motion

$$\begin{bmatrix} \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \end{bmatrix} - \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{A}^{-1} \left(\rho \mathbf{V}^2 \mathbf{C} + \mathbf{E} \right) & -\mathbf{A}^{-1} \left(\rho \mathbf{V} \mathbf{B} + \mathbf{D} \right) \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{p} \\ \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{p} \end{bmatrix}$$

- <u>F</u> nonlinearity
- Several methods used
 - Normal Form
 - Higher Order Harmonic Balance
 - Numerical Continuation

Normal Form Theory

- Technique to obtain the local post-critical behaviour on a 1DOF undergoing Hopf Bifurcation
- Requires Centre manifold theory to simplify system
 from MDOF to 1DOF
 - Applied to structural discontinuous non-linearities
 - Curve-fit the non-linearity
 - Define the equation of motion
 - Define the linear flutter condition
 - Reduce the model (Centre Manifold)
 - Apply Normal Form Theory
 - Determine amplitude and frequency of LCO

NFT Solution

- The University of Manchester
- 18 DOF aeroelastic model
- Bi-linear non-linearity with various ratio of inner / outer stiffness

Higher Order Harmonic Balance

- Various types of bifurcation can be treated using Harmonic Balance methods
 - Hopf (sub-critical and super-critical)
 - Period Doubling
 - Folds

MANCHESTER 1824

- Harmonic Balance
 - Approximates LCO with single sinusoidal component
 - Implementation
 - Describing function
 - Equivalent linearisation
 - Accuracy reduced if significant higher order components exists
- Higher Order Harmonic Balance
 - Similar to HB but higher order terms included
 - Approximates LCO with multiple sinusoids

BAH Aeroelastic Model

- Bisplinghoff, Ashley and Halfman (BAH) wing
- 12 Finite Element nodes, 72 degrees of freedom
- 9 modes

MANCHESTER

- Unsteady aerodynamics with 4 aerodynamic lags
- A total of 54 states
- Piecewise linear nonlinearity in control surface rotation degree of freedom

Bifurcation plots from HOHB

 Bifurcation plots from HB 5 and HB 17 for lower LCO branch

MANCHESTER 1824

• 17th order HB results are more accurate but slower

Numerical Continuation

- Numerical Continuation is a method designed to solve nonlinear algebraic equations that depend on one or more parameters
- Having achieved a solution, can then change the parameters slightly and track the new solution

NC applied to full aircraft

- 9 structural modes
- 4 aerodynamic lag roots
- DOF-2-DOF cubic / freeplay non-linearity applied to control surface

Frequency-damping plot

- The University of Manchestel
- M,C,K, AIC extracted from Nastran
- Roger approximation applied to transform AIC matrices to time domain

Cubic non-linearity

215

Freeplay non-linearity

Conclusions

- A number of different approaches have been described for modeling and prediction of linear and non-linear aeroelastic behaviour
- Prediction of non-linear aeroelastic phenomena presents a number of challenges for analysis, testing and FE/CFD modelling
- Further work involves the extension to larger order models and transonic aerodynamics