Perturbations of Jordan Matrices

E Brian Davies

This is an account of the preprint of the same name by Mildred Hager and myself, of November 2006.

Pseudospectra

The pseudospectral regions are defined by

$$
\operatorname{Spec}_{\varepsilon}(A)=\left\{z:\left\|(z I-A)^{-1}\right\|>\varepsilon^{-1}\right\} .
$$

and satisfy

$$
\operatorname{Spec}(A) \subseteq \operatorname{Spec}_{\varepsilon}(A)
$$

The NSA harmonic oscillator

$$
(H f)(x):=-f^{\prime \prime}(x)+c^{2} x^{2} f(x)
$$

acting in $L^{2}(\mathbf{R})$ has eigenvalues $\lambda_{n}:=c(2 n+1)$ where $n=0,1, \ldots$

If c is complex then the norms of the spectral projections P_{n} increase at an exponential rate as $n \rightarrow \infty$.(EBD and Kuijlaars)

The contours correspond to $\varepsilon=10^{-n}$ where $n=0,1,2, \ldots$

With a perturbation of norm 10^{-6} the splitting of the eigenvalues along the pseudospectral contour is not due to model error or processor rounding errors.

The Jordan block

$$
J_{4}:=\left(\begin{array}{cccc}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right)
$$

Using the explicit formula for $\left(z I-J_{n}\right)^{-1}$ one immediately obtains

$$
\left\|\left(z I-J_{n}\right)^{-1}\right\|_{1}=\frac{|z|^{-n}-1}{1-|z|}
$$

so the norm is exponentially large inside the unit circle.

Perturbations of The Jordan block

If $\|B\| \leq 1$ and $0<c<1$ then

$$
\operatorname{Spec}\left(J_{n}+c^{n} B\right) \subseteq\{z:|z| \leq c\} .
$$

If B is chosen randomly one might expect the spectrum to be randomly distributed within this ball.

Mildred Hager showed that this was not correct. I got involved in looking with her in some detail at this problem.

The result of adding a small random perturbation to the Jordan matrix is to move most of the eigenvalues to the Lidskii circle, but a few are left at random positions inside the circle.

Theorem 1 Let $M=J+c^{n} K$ where J is the standard $n \times n$ Jordan matrix, $0<c<1$ and K is a random matrix with independent Gaussian entries.

Then for any $\varepsilon>0$ with probability that converges to 1 as $n \rightarrow \infty$, the proportion of the eigenvalues that lie in any annulus

$$
\{z: c-\varepsilon<|z|<c+\varepsilon\}
$$

converges to 1.
The remaining eigenvalues lie inside the annulus.

Proof: Reduce the problem to finding the solutions of an equation of the form

$$
w^{n}=f(w), \quad w=z / c
$$

The analysis of the spectrum involves using theorems such as the following, and proving that the bounds hold with high probability.

Proposition 2 (The Poisson-Jensen formula) Let f be a holomorphic function that does not vanish anywhere on the boundary of $D(0, R)$, where $0<R<\infty$. Let M be the number of zeros of f in $D\left(0, R e^{-\sigma}\right)$ for some positive constant σ. Then

$$
\begin{equation*}
M \leq \frac{1}{\sigma}\left(-\ln \frac{|f(0)|}{\|f\|_{L^{\infty}(D(0, R))}}\right) \tag{1}
\end{equation*}
$$

A simpler Example

Consider $A=J_{n}+c^{n} K$ where

$$
K=\left(\begin{array}{cc}
0 & 0 \\
C & 0
\end{array}\right)
$$

and C is a fixed $k \times k$ matrix, for example

$$
C=\left(\begin{array}{ccc}
8 & 0 & 0 \\
2 & 5 & 0 \\
1 & -2 & 3
\end{array}\right)
$$

THEOREM If $0<c<\infty$ then $z \in \operatorname{Spec}\left(J_{n}+c^{n} K\right)$ if and only if

$$
(z / c)^{n}=p(z)
$$

where p is a fixed (i.e. n-independent) polynomial of degree $2 k$. There is a large family of solutions for which $|z / c|$ is close to 1 . If $|z / c|<1$ then there are other solutions close to the zeros of $p(z)$. The resulting spectrum is shown in the next figure.

$A=J_{n}+c^{n} K$ where $n=80$ and $c=0.6$

More complex problems may lead to equations of the type

$$
z^{2 n}+p(z) z^{n}+q(z)=0
$$

or polynomial equations of higher order. The zeros of such equations are as shown in the following figure.

