Perturbations of Jordan Matrices

E Brian Davies

This is an account of the preprint of the same name by Mildred

Hager and myself, of November 2006.




Pseudospectra

The pseudospectral regions are defined by
Spec (A) = {z: ||(zI — A)7|| > et}
and satisfy

Spec(A) C Spec_(A).




The NSA harmonic oscillator

(Hf)(x) = —f"(z) + ?2* f(x)

acting in L?(R) has eigenvalues A\, := ¢(2n + 1) where n = 0,1, ....

If c is complex then the norms of the spectral projections P,

increase at an exponential rate as n — co.(EBD and Kuijlaars)
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The contours correspond to € = 107" where n =0, 1,2, ...
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With a perturbation of norm 107° the splitting of the eigenvalues

along the pseudospectral contour is not due to model error or

processor rounding errors.




The Jordan block
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Using the explicit formula for (21 — J,,)~! one immediately obtains

-n _q
I—Jn —1 _ |Z|
I = 3y = H—

so the norm is exponentially large inside the unit circle.




Perturbations of The Jordan block

If |B]| £1and 0 < ¢ <1 then

Spec(J, +c"B) C {z: |z]| < c}.

If B is chosen randomly one might expect the spectrum to be
randomly distributed within this ball.

Mildred Hager showed that this was not correct. I got involved in

looking with her in some detail at this problem.
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The result of adding a small random perturbation to the Jordan
matrix is to move most of the eigenvalues to the Lidskii circle, but

a few are left at random positions inside the circle.



Theorem 1 Let M = J + c"K where J is the standard n x n
Jordan matriz, 0 < c < 1 and K is a random matriz with

independent Gausstan entries.

Then for any € > 0 with probability that converges to 1 as n — o0,

the proportion of the eigenvalues that lie in any annulus

{z:c—e<|z| <c+¢e}

converges to 1.

The remaining eigenvalues lie inside the annulus.

Proof: Reduce the problem to finding the solutions of an equation
of the form

w = z/c.




The analysis of the spectrum involves using theorems such as the
following, and proving that the bounds hold with high probability.

Proposition 2 (The Poisson-Jensen formula) Let f be a
holomorphic function that does not vanish anywhere on the
boundary of D(0, R), where 0 < R < oo. Let M be the number of

zeros of f in D(0, Re™ %) for some positive constant o. Then

M< X (—m 1/ (0)] ) | (1)
g HfHLoo(D(o,R))




A simpler Example

Consider A = J,, + ¢" K where

0 0
C 0

K =

and C' is a fixed k£ X k matrix, for example




THEOREM If 0 < ¢ < oo then z € Spec(J,, + ¢"K) if and only if

(z/c)" = p(2)

where p is a fixed (i.e. n-independent) polynomial of degree 2k.

There is a large family of solutions for which |z/c| is close to 1. If

|z/c| < 1 then there are other solutions close to the zeros of p(z).

The resulting spectrum is shown in the next figure.




A=J, +c"K where n = 80 and ¢ = 0.6




More complex problems may lead to equations of the type

2"+ p(2)2" 4 q(2) = 0

or polynomial equations of higher order. The zeros of such
equations are as shown in the following figure.







