MATRIX FUNCTIONS WITH SYMMETRIES
 (Recent) collaborations with U. Prells (Swansea), and L. Rodman (Williamsburg).

> Peter Lancaster, University of Calgary,
> and

Manchester Inst. of Math. Sciences (MIMS).

March, 2007.

Plan of the talk.

- Spectra of general matrix functions.
- Proper values for self-adjoint matrix functions.
- Sign characteristic - geometrically.
- Sign characteristic via realization.
- Matrix polynomials.
- Linearization and sign characteristics.
- (Strictly) isospectral families preserving structure.
- Palindromic polynomials and unitary structure.

Meromorphic functions

Given n^{2} functions $w_{j k}(\lambda)$ meromorphic on a suitable domain, form

$$
W(\lambda):=\left[w_{j k}(\lambda)\right]_{j, k=1}^{n} .
$$

Assume regularity (throughout), i.e. $\operatorname{det} W(\lambda) \neq 0$.
An eigenvalue is a $\lambda_{0} \in \mathbb{C}$ such that $\operatorname{det} W\left(\lambda_{0}\right)=0$.
Spectrum of $W, \sigma(W)$, is set of all eigenvalues.
NB: A point can be both an ev and a pole.

Smith form

"Extended" Smith form:
Theorem
$\exists n \times n$ analytic matrix fns $E(\lambda), F(\lambda)$ invertible near λ_{0} and integers ν_{1}, \ldots, ν_{n} such that

$$
W(\lambda)=E(\lambda)\left[\begin{array}{lll}
\left(\lambda-\lambda_{0}\right)^{\nu_{1}} & & \\
& \ddots & \\
& & \left(\lambda-\lambda_{0}\right)^{\nu_{n}}
\end{array}\right] F(\lambda)
$$

holds near λ_{0}.
Partial multiplicites $\nu_{1} \geq \cdots \geq \nu_{n}$ may be + ve, zero, or -ve.
Partial multiplicity of ev of $W(\lambda) \Leftrightarrow \nu_{j}>0$.
Partial multiplicity of pole of $W(\lambda) \Leftrightarrow \nu_{j}<0$.

Self-adjoint meromorphic functions

Definitions:

1. $W(\lambda)$ is self-adjoint (on the real line) if $W\left((\bar{\lambda})^{*}\right)=W(\lambda)$, $\lambda \notin \sigma\left(W^{-1}\right)$.
2. Let $\lambda_{0} \in \sigma(W) \cap \mathbb{R}$. A real-valued $\mathrm{fn} \mu(\lambda)$ defined on a real n'hood Ω of λ_{0} is a proper value of $W(\lambda)$ if \exists analytic vector fn . $\phi(\lambda)$ s.t. $W(\lambda) \phi(\lambda)=\mu(\lambda) \phi(\lambda)$ on Ω.

Self-adjoint meromorphic functions

Definitions:

1. $W(\lambda)$ is self-adjoint (on the real line) if $W\left((\bar{\lambda})^{*}\right)=W(\lambda)$, $\lambda \notin \sigma\left(W^{-1}\right)$.
2. Let $\lambda_{0} \in \sigma(W) \cap \mathbb{R}$. A real-valued $\mathrm{fn} \mu(\lambda)$ defined on a real n'hood Ω of λ_{0} is a proper value of $W(\lambda)$ if \exists analytic vector fn . $\phi(\lambda)$ s.t. $W(\lambda) \phi(\lambda)=\mu(\lambda) \phi(\lambda)$ on Ω.

Theorem

Let $W(\lambda)$ be $n \times n$, self-adjoint, and meromorphic in a real n'hood Ω of λ_{0}. Then \exists proper values $\mu_{1}(\lambda), \ldots, \mu_{n}(\lambda)$ and an analytic matrix-valued fn $U(\lambda)$ defined on Ω where $U(\lambda) U(\lambda)^{*}=I$ and

$$
M(\lambda)=U(\lambda)^{-1} \operatorname{diag}\left[\mu_{1}(\lambda), \ldots, \mu_{n}(\lambda)\right] U(\lambda) .
$$

Sign characteristic - geometric version

Self-adjoint, meromorphic $W(\lambda)$ near λ_{0}, as above, with proper values $\mu_{1}(\lambda), \ldots, \mu_{n}(\lambda)$. Define

$$
\operatorname{sgn}\left[\mu_{j}(\lambda)\left(\lambda-\lambda_{0}\right)^{-\nu_{j}}\right]_{\lambda=\lambda_{0}}
$$

to be a member of the sign characteristic of $W(\lambda)$ at λ_{0} associated with μ_{j}.

The sign characteristic is a collection of +1 's and -1 's corresponding to all n proper values.

Toward linear algebra

Consider rational functions $W(\lambda)$ with a Laurent expansion at ∞ :

$$
W(\lambda)=\sum_{j=-\infty}^{q} W_{j} \lambda^{j}
$$

The "polynomial part" is $U(\lambda)=\sum_{j=0}^{q} W_{j} \lambda^{j}$. Then there are realizations:

$$
W(\lambda)-U(\lambda)=C(\lambda I-A)^{-1} B
$$

(and A may be large). Furthermore, there are minimal relizations (minimizing the size of the "main matrix" A). Also,

$$
\text { Minimality } \leftrightarrow \text { controllability of }(A, B)
$$ plus observability of (C, A).

Notation:

If $X \in \mathbb{C}^{n \times \ell n}, Y \in \mathbb{C}^{\ell n \times n}$ and $M \in \mathbb{C}^{\ell n \times \ell n}$, we define $\ell n \times \ell n$ matrices by:

$$
[X, M]_{\downarrow}^{\ell}:=\left[\begin{array}{c}
X \\
X M \\
\vdots
\end{array}\right], \quad[M, Y]_{\rightarrow}^{\ell}:=\left[\begin{array}{llll}
Y & M Y & \cdots & M^{\ell-1}
\end{array}\right] .
$$

When $[X, M]_{\downarrow}^{\ell}$ is nonsingular, the pair (X, M) is known as a null-kernel pair and, when $[M, Y]_{\rightarrow}^{\ell}$ is nonsingular, (M, Y) is known as a full-range pair.

Notation:

If $X \in \mathbb{C}^{n \times \ell n}, Y \in \mathbb{C}^{\ell n \times n}$ and $M \in \mathbb{C}^{\ell n \times \ell n}$, we define $\ell n \times \ell n$ matrices by:

$$
[X, M]_{\downarrow}^{\ell}:=\left[\begin{array}{c}
X \\
X M \\
\vdots
\end{array}\right], \quad[M, Y]_{\rightarrow}^{\ell}:=\left[\begin{array}{llll}
Y & M Y & \cdots & M^{\ell-1}
\end{array}\right] .
$$

When $[X, M]_{\downarrow}^{\ell}$ is nonsingular, the pair (X, M) is known as a null-kernel pair and, when $[M, Y]_{\rightarrow}^{\ell}$ is nonsingular, (M, Y) is known as a full-range pair.

Definitions: (A, B) is controllable if (A, B) is a full-range pair. (C, A) is observable if (C, A) is a null-kernel pair.

Poles of $W(\lambda) \leftrightarrow$ evs of A (of a min. realn.).
Notions of "partial multiplicities" at poles $W(\lambda)$ are consistent with those of the Jordan form for A.

Zeros of $W(\lambda) \leftrightarrow$ evs of main matrix A of a min. realization for $W(\lambda)^{-1}$. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Poles of $W(\lambda) \leftrightarrow$ evs of A (of a min. realn.).
Notions of "partial multiplicities" at poles $W(\lambda)$ are consistent with those of the Jordan form for A.

Zeros of $W(\lambda) \leftrightarrow$ evs of main matrix A of a min. realization for $W(\lambda)^{-1}$. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

MATRIX POLYNOMIALS

Generically,

$$
L(\lambda)=\sum_{j=0}^{\ell} A_{j} \lambda^{j}, \quad \operatorname{det} A_{\ell} \neq 0
$$

The resolvent $L(\lambda)^{-1}$ has a min. realization:

$$
L(\lambda)^{-1}=C(\lambda I-A)^{-1} B
$$

Matrix polynomials

In particular (when $\ell=4$, etc.), can take $C=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$,
$A=C_{L}=\left[\begin{array}{cccc}0 & I_{n} & 0 & 0 \\ 0 & 0 & I_{n} & 0 \\ 0 & 0 & 0 & I_{n} \\ -A_{4}^{-1} A_{0} & -A_{4}^{-1} A_{1} & -A_{4}^{-1} A_{2} & -A_{4}^{-1} A_{3}\end{array}\right], \quad B=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ A_{4}^{-1}\end{array}\right]$.
call $\left(C, C_{L}, B\right)$ a standard triple. Then all realizations of the resolvent are formed by standard triples

$$
\left(C T^{-1}, T C_{L} T^{-1}, T B\right)
$$

among which there are Jordan triples

$$
(X, J, Y)
$$

with J in Jordan form and X, Y displaying the right and left eigenvectors (in chains).

Self-adjoint Matrix Polynomials

Consider $L(\lambda)=\sum_{j=0}^{\ell} A_{j} \lambda^{j}$ as before but now

$$
A_{j}^{*}=A_{j}, \quad j=0,1, \ldots, \ell .
$$

The block-Hankel matrix

$$
H:=\left[\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{\ell} \\
A_{2} & & . & 0 \\
\vdots & . & . & \vdots \\
A_{\ell} & 0 & \cdots & 0
\end{array}\right]
$$

has properties: $H^{*}=H$ and $\left(H C_{L}\right)^{*}=H C_{L}$, or, $H C_{L}=C_{L}^{*} H$. In other words, C_{L} is self-adjoint in the indefinite scalar product defined by H.

Linearization of Self-adjoint Matrix Polynomials

$I \lambda-C_{L}$ is a linearization of $L(\lambda)$:
So is $H\left(I \lambda-C_{L}\right)=H \lambda-B$ where

$$
B:=\left[\begin{array}{ccccc}
-A_{0} & 0 & 0 & \cdots & 0 \\
0 & A_{2} & A_{3} & \cdots & A_{\ell} \\
0 & A_{3} & & . & 0 \\
\vdots & \vdots & . & . & \vdots \\
0 & A_{\ell} & 0 & \cdots & 0
\end{array}\right]
$$

Thus $H \lambda-B$ is also self-adjoint. Call it the primary linearization of $L(\lambda)$.

Simultaneous reduction of 2 forms

Canonical forms for H and C under strict equivalence and congruence (both over \mathbb{C}) differ in only one major respect:

Congruence includes a SIGN CHARACTERISTIC.
Strict equivalence does not.
(See, for example, recent Lancaster/Rodman paper in SIAM Review. Note echoes of Kronecker and Weierstrass.)

Theorem
This sign characteristic is the same set of signs (ϵ, say) appearing in the theory of matrix functions - when applied to $L(\lambda)$.

Simultaneous reduction of 2 forms

Canonical forms for H and C under strict equivalence and congruence (both over \mathbb{C}) differ in only one major respect:

Congruence includes a SIGN CHARACTERISTIC.
Strict equivalence does not.
(See, for example, recent Lancaster/Rodman paper in SIAM Review. Note echoes of Kronecker and Weierstrass.)

Theorem
This sign characteristic is the same set of signs (ϵ, say) appearing in the theory of matrix functions - when applied to $L(\lambda)$.

We call polynomial systems isospectral if all ev multiplicity data agree.
They are strictly isospectral if they are isospectral AND their sign characteristics agree.

Jordan triples

Simultaneous reduction by congruence:

$$
T^{*}\left(H C_{L}\right) T=P_{\epsilon} J, \quad T^{*} H T=P_{\epsilon},
$$

or,

$$
T^{-1} C_{L} T=J, \quad T^{-1} C_{L} T=J,
$$

with

$$
J=\left[\begin{array}{cccc}
J_{c} & 0 & 0 & 0 \\
0 & J_{R 1} & 0 & 0 \\
0 & 0 & J_{R 2} & 0 \\
0 & 0 & 0 & J_{c}
\end{array}\right], \quad P=\left[\begin{array}{cccc}
0 & 0 & 0 & I \\
0 & l & 0 & 0 \\
0 & 0 & -I & 0 \\
I & 0 & 0 & 0
\end{array}\right]
$$

Jordan triples

Simultaneous reduction by congruence:

$$
T^{*}\left(H C_{L}\right) T=P_{\epsilon} J, \quad T^{*} H T=P_{\epsilon},
$$

or,

$$
T^{-1} C_{L} T=J, \quad T^{-1} C_{L} T=J,
$$

with

$$
J=\left[\begin{array}{cccc}
J_{c} & 0 & 0 & 0 \\
0 & J_{R 1} & 0 & 0 \\
0 & 0 & J_{R 2} & 0 \\
0 & 0 & 0 & J_{c}
\end{array}\right], \quad P=\left[\begin{array}{cccc}
0 & 0 & 0 & l \\
0 & l & 0 & 0 \\
0 & 0 & -l & 0 \\
l & 0 & 0 & 0
\end{array}\right] .
$$

Jordan triples (canonical standard triples):

NO SYMMETRY:
(X, J, Y).
HERMITIAN:

Isospectral families: preservation of structure

Theorem

Given $L(\lambda)$ (and hence C_{L}), let X be any matrix in $\mathbb{C}^{\ell \times \ell n}$ for which $\left[X, C_{L}\right]_{\downarrow}^{\ell}$ is nonsingular (a null-kernel pair) and define

$$
Y=\left(\left[X, C_{L}\right]_{\downarrow}^{\ell}\right)^{-1}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
A_{\ell}^{-1}
\end{array}\right]
$$

Then $\left[C_{L}, Y\right]_{\rightarrow}^{\ell}$ is nonsingular (a full-range pair) and, with

$$
E:=\left(\left[C_{L}, Y\right]_{\rightarrow}^{\ell}\right)^{-1} A^{-1}, \quad F:=\left(\left[X, C_{L}\right]_{\downarrow}^{\ell}\right)^{-1}
$$

the pencil

$$
\lambda A^{\prime}-B^{\prime}:=E(\lambda A-B) F
$$

is the primary linearization of a polynomial $L^{\prime}(\lambda)$ which is isospectral with $L(\lambda)$.
Furthermore, all systems isospectral with $L(\lambda)$ can be generated in this way (i.e. by choice of the matrix X).

Strictly isospectral families: preservation of structure

Theorem
Let $L(\lambda)$ be an Hermitian matrix polynomial and $\left[X, C_{L}\right]_{\downarrow}^{\ell}$ be nonsingular.
Then with F as above

$$
\lambda A^{\prime}-B^{\prime}:=F^{*}(\lambda A-B) F
$$

is the primary linearization of a Hermitian polynomial $L^{\prime}(\lambda)$ which is strictly isospectral with $L(\lambda)$.

Palindromic polynomials

The reverse polynomial of $L(\lambda)$ is

$$
\operatorname{rev} L(\lambda):=\sum_{j=0}^{\ell} A_{\ell-j} \lambda^{j}
$$

Definition: $L(\lambda)$ is μ - palindromic $(\mu= \pm 1)$, if

$$
A_{\ell-j}^{*}=\mu A_{j} \quad \text { for } \quad j=0,1, \ldots, \ell
$$

i.e.

$$
(\operatorname{rev} L(\lambda))^{*}=\mu L(\lambda)
$$

We take case $\mu=1$ only. The anti-palindromic case, $\mu=-1$ is analogous.

Observation: A palindromic polynomial of degree one has the form $\lambda M+M^{*}$ for some square matrix M.
With H, B, C_{L} as above, define $S_{j}=A C_{L}^{j}, j=0,1,2, \ldots$ (Then $S_{0}=A=H, S_{1}=B=A C_{L}$.) Also, let

$$
R_{\ell, n}:=\left[\begin{array}{cccc}
0 & \cdots & 0 & I_{n} \\
0 & & I_{n} & 0 \\
\vdots & & & \vdots \\
I_{n} & 0 & \cdots & 0
\end{array}\right]
$$

Observation: A palindromic polynomial of degree one has the form $\lambda M+M^{*}$ for some square matrix M.
With H, B, C_{L} as above, define $S_{j}=A C_{L}^{j}, j=0,1,2, \ldots$ (Then $S_{0}=A=H, S_{1}=B=A C_{L}$.) Also, let

$$
R_{\ell, n}:=\left[\begin{array}{cccc}
0 & \cdots & 0 & I_{n} \\
0 & & I_{n} & 0 \\
\vdots & & & \vdots \\
I_{n} & 0 & \cdots & 0
\end{array}\right]
$$

Let $\mathcal{P}=\left\{\left(c_{1}, \ldots, c_{\ell}\right) \in \mathbb{C}^{\ell}: c_{j}=c_{\ell-j+1}^{*}, j=1,2, \ldots, \ell\right\}$,
and denote the set of all zeros of $c(\lambda):=\sum_{j=1}^{\ell} c_{j} \lambda^{j-1}$ by $\sigma(c)$.
Define $A_{c}=R_{\ell n} \sum_{j=1}^{\ell} c_{j} S_{j-1} \quad$ for each $\quad c \in \mathcal{P}$.

Theorem

Let $L(\lambda)$ be palindromic, $c \in \mathcal{P}$ and $\sigma(c) \cap \sigma(L)=\phi$. Then $\lambda A_{c}+A_{c}^{*}$ is a palindromic linearization of $L(\lambda)$.

The primary linearization

Definition: The primary linearization for a palindromic matrix polynomial $L(\lambda)$ is the palindromic pencil $\lambda A_{c}+A_{c}^{*}$ where

$$
A_{c}= \begin{cases}R_{\ell, n}\left(S_{k-1}+S_{k}\right) & \text { when } \ell=2 k \text { and }-1 \notin \sigma(L), \\ R_{\ell, n} S_{k} & \text { when } \ell=2 k+1 .\end{cases}
$$

$\left(\right.$ Recall $\left.S_{j}=A C_{L}^{j}.\right)$

Isospectral families: preservation of structure

Theorem
Let $L(\lambda)$ be palindromic and $\left[X, C_{L}\right]_{\downarrow}^{\ell}$ be nonsingular. Let

$$
E:=\left(\left[C_{L}, Y\right]_{\rightarrow}^{\ell}\right)^{-1} A^{-1}, \quad F:=\left(\left[X, C_{L}\right]_{\downarrow}^{\ell}\right)^{-1},
$$

(as above) and let $\lambda A_{c}+A_{c}^{*}$ be the primary linearization of $L(\lambda)$. Then

$$
\lambda A^{\prime}-B^{\prime}:=R E R\left(\lambda A_{c}+A_{c}^{*}\right) F
$$

is the primary linearization of an isospectral palindromic polynomial (so that $B^{\prime}=-A^{\prime}$).
Furthermore, all palindromic polynomials isospectral with $L(\lambda)$ can be generated in this way (i.e. by choice of the matrix X).

Isospectral families: preservation of structure

Theorem

Let $L(\lambda)$ be palindromic and $\left[X, C_{L}\right]_{\downarrow}^{\ell}$ be nonsingular. Let

$$
E:=\left(\left[C_{L}, Y\right]_{\rightarrow}^{\ell}\right)^{-1} A^{-1}, \quad F:=\left(\left[X, C_{L}\right]_{\downarrow}^{\ell}\right)^{-1},
$$

(as above) and let $\lambda A_{c}+A_{c}^{*}$ be the primary linearization of $L(\lambda)$. Then

$$
\lambda A^{\prime}-B^{\prime}:=R E R\left(\lambda A_{c}+A_{c}^{*}\right) F
$$

is the primary linearization of an isospectral palindromic polynomial (so that $B^{\prime}=-A^{\prime}$).
Furthermore, all palindromic polynomials isospectral with $L(\lambda)$ can be generated in this way (i.e. by choice of the matrix X).

What about the signs? This strict-equivalence is inadequate.

Proposition

The spectrum of a palindromic pencil is symmetric w.r.t. the unit circle in the sense that the ev satisfy either $\left|\lambda_{i}\right|=1$, or they occur in pairs $\lambda_{j} \neq \lambda_{k}$ with $\lambda_{j} \bar{\lambda}_{k}=1$.

This suggests unitary properties for palindromic polynomials.
Can we find an H in which C_{L} is H-unitary?
i.e. for which $C_{L}^{*} H C_{L}=H$?

Proposition

The spectrum of a palindromic pencil is symmetric w.r.t. the unit circle in the sense that the ev satisfy either $\left|\lambda_{i}\right|=1$, or they occur in pairs $\lambda_{j} \neq \lambda_{k}$ with $\lambda_{j} \bar{\lambda}_{k}=1$.

This suggests unitary properties for palindromic polynomials.
Can we find an H in which C_{L} is H-unitary?
i.e. for which $C_{L}^{*} H C_{L}=H$?

To this end, define

$$
\mathcal{Q}=\left\{z=\left(z_{0}, z_{1}, \ldots, z_{\ell}\right) \in \mathbb{C}^{\ell+1}:-z_{i}=\overline{z_{\ell-i}} \quad \text { for } \quad i=0,1, \ldots, \ell\right\} .
$$

and, whenever $z \in \mathcal{Q}$ define, $q_{z}(\lambda):=\sum_{i=0}^{\ell} z_{i} \lambda^{i}$.

Candidates for indefinite scalar products

Theorem

Let $L(\lambda)$ be palindromic and matrices S_{0}, \ldots, S_{ℓ} be defined as above. Then all matrices of the form $H_{z}=R \sum_{j=0}^{\ell} z_{j} S_{j}$ with $z \in \mathcal{Q}$, are Hermitian and satisfy the equation $H_{z} C_{L}=\left(C_{L}^{-1}\right)^{*} H_{z}$.
Furthermore, when $z \in \mathcal{Q}$ and $\operatorname{det} A_{0} \neq 0, H_{z}$ is nonsingular if and only if no zero of $q_{z}(\lambda)$ is an eigenvalue of $L(\lambda)$.

Candidates for indefinite scalar products

Theorem

Let $L(\lambda)$ be palindromic and matrices S_{0}, \ldots, S_{ℓ} be defined as above. Then all matrices of the form $H_{z}=R \sum_{j=0}^{\ell} z_{j} S_{j}$ with $z \in \mathcal{Q}$, are Hermitian and satisfy the equation $H_{z} C_{L}=\left(C_{L}^{-1}\right)^{*} H_{z}$.
Furthermore, when $z \in \mathcal{Q}$ and $\operatorname{det} A_{0} \neq 0, H_{z}$ is nonsingular if and only if no zero of $q_{z}(\lambda)$ is an eigenvalue of $L(\lambda)$.

When $\ell=2 k$ we choose

$$
H=i R S_{k}
$$

and when $\ell=2 k+1$ it is assumed that $1 \notin \sigma(L)$ and

$$
H=R\left(S_{k}-S_{k+1}\right)
$$

Palindromic Jordan triples

Recall the general Jordan triple: (X, J, Y).
For Hermitian polynomials we have

$$
\left(X, J, P X^{*}\right), \quad \text { or } \quad\left(Y^{*} P, J, Y\right)
$$

if we "start" with left eigenvectors, Y.
Canonical triple for palindromics?

Palindromic Jordan triples

Recall the general Jordan triple: (X, J, Y).
For Hermitian polynomials we have

$$
\left(X, J, P X^{*}\right), \quad \text { or } \quad\left(Y^{*} P, J, Y\right)
$$

if we "start" with left eigenvectors, Y.
Canonical triple for palindromics?

First re-cast Jordan blocks:

$$
J=J_{1} \oplus J_{2} \oplus J_{3},
$$

where ev of J_{1} and J_{2} are all those inside, and on the unit circle, resp..
Then J_{3} has same structure as J_{1}, but ev are images of those of J_{1}; they are outside the unit circle.

Palindromic Jordan triples

Let

$$
P_{\epsilon}=\left[\begin{array}{ccc}
0 & 0 & P_{1} \\
0 & P_{2} & 0 \\
P_{1} & 0 & 0
\end{array}\right]
$$

where P_{1}, P_{2} have simple block structure determined by that of J_{1} and J_{2}, and P_{2} depends on ϵ :

$$
P_{\epsilon}^{2}=I \quad \text { and } \quad P_{\epsilon}^{*}=P_{\epsilon} .
$$

We construct a canonical K from J by bilinear maneouvres, and then:
Theorem
If C_{L} is H-unitary there is a nonsingular matrix S reducing H and C_{L} simultaneously to the forms:

$$
\left(S^{*}\right)^{-1} H S^{-1}=P_{\epsilon}, \quad S C_{L} S^{-1}=K
$$

It follows that $K^{*} P_{\epsilon} K=P_{\epsilon}$.

Unitary triples

Definition: A standard triple (X, T, Y) for a palindromic polynomial $L(\lambda)$ is a unitary triple if $T=K$ and

$$
X= \begin{cases}i Y^{*}\left(K^{*}\right)^{k-1} P_{\epsilon} & \text { when } \ell=2 k \\ Y^{*}\left(K^{*}\right)^{k}\left(I-K^{*}\right) P_{\epsilon} & \text { when } \ell=2 k+1\end{cases}
$$

APPLICATIONS:

Consider the difference equation:

$$
A_{0} x_{i}+A_{1} x_{i+1}+\cdots+A_{\ell} x_{i+\ell}=0, \quad i=0,1, \ldots
$$

It is bounded if all solutions are bounded.
Theorem
Let $L(\lambda):=\sum_{j=0}^{\prime} \lambda^{j} A_{j}$ have palindromic symmetry with A_{ℓ} nonsingular. Then this difference equation is "bounded" if and only if $L(\lambda)$ has simple structure with respect to the unit circle.
(All ev on unit circle and only linear elementary divisors.)
Also, a criterion for stably bounded systems in the case of even degree.

REFERENCES:

For material on rational functions and systems theory see:
Gohberg, I., Lancaster, P., and Rodman, L., Invariant Subspaces of Matrices with Applications, John Wiley, 1986, SIAM, 2006.
(And other GLR works.)
xxxxxxxxxxxxxxxxxxxxxxxx

For our work on isospectral families and palindromics see:
Lancaster, P., and Prells, U., Isospectral families of high-order systems, Z.Angew.Math.Mech., 87, 2007, 219-234.

Lancaster, P., Prells, U., and Rodman, L., Canonical structures for palindromic matrix polynomials, submitted.

