Perturbation theory for Lagrangian subspaces of symplectic matrices

Christian Mehl
Institut für Mathematik
Technische Universität Berlin

Third Berlin-Manchester Workshop on
 Nonlinear Eigenvalue Problems

Manchester, March 22-23, 2007
joint work with Volker Mehrmann, André Ran, and Leiba Rodman

Work supported by DFG Research Center
Matheon - Mathematics for key technologies

Palindromic polynomial eigenvalue problems

Application: vibration analysis of rail tracks excited by high speed trains

Finite element discretization leads to a palindromic eigenvalue problem

$$
\left(\lambda^{2} A_{0}^{T}+\lambda A_{1}+A_{0}\right) x=0,
$$

where $A_{0}, A_{1} \in \mathbb{C}^{n \times n}, A_{1}^{T}=A_{1}$, and A_{0} is highly singular.

Palindromic polynomial eigenvalue problems

More applications:

- simulation of surface acoustic wave (SAW) filters (Zaglmayr 2002)
- computation of the Crawford number (Higham/Tisseur/Van Dooren 2002)

Important task: (sometimes) compute the deflating subspace associated with the eigenvalues inside (resp. outside) the unit circle

Question: What happens if there are eigenvalues close to the unit circle?

We need a perturbation theory for deflating subspaces!

Palindromics and symplectics

Helpful observation: Palindromic matrix polynomials are related to symplectic matrices (Schröder 2005)

Example: $P(\lambda)=\lambda^{2} A+B+A^{T}$ can be linearized as

$$
L_{Z}(\lambda)=\lambda Z+Z^{T}=\lambda\left[\begin{array}{cc}
A & B-A^{T} \\
A & A
\end{array}\right]+\left[\begin{array}{cc}
A^{T} & A^{T} \\
B-A & A^{T}
\end{array}\right]
$$

if -1 is not an eigenvalue of $P(\lambda)$.
$Z^{-1} Z^{T}$ is similar to a symplectic matrix if 1 is not an eigenvalue of $P(\lambda)$.

Symplectic matrices

Symplectic matrices: $S \in \mathbb{F}^{2 n \times 2 n}$ is called symplectic if

$$
S^{T} J S=J, \quad \text { where } J=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] .
$$

Definition: (more general)

1) Let $J \in \mathbb{F}^{2 n \times 2 n}$ be a skew-symmetric invertible matrix.

- A matrix $S \in \mathbb{F}^{2 n \times 2 n}$ is called J-symplectic if $S^{T} J S=J$.

2) Let $J \in \mathbb{C}^{m \times m}$ be a Hermitian invertible matrix.

- A matrix $S \in \mathbb{C}^{m \times m}$ is called J-unitary if $S^{*} J S=J$.

Assumption: In 2), we assume J has n negative and n positive eigenvalues. Then J is congruent to

$$
i\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]
$$

Canonical forms for symplectic matrices

Three cases:

- Complex J-symplectics $\left(J^{T}=-J, S^{T} J S=J\right)$;
- Real J-symplectics $\left(J^{T}=-J, S^{T} J S=J\right)$;
- Complex J-unitaries $\left(J^{*}=J, S^{*} J S=J\right)$; (and J has n negative and n positive eigenvalues);

Transformations that preserve structure:

- for J-symplectics: $(J, S) \mapsto\left(P^{T} J P, P^{-1} S P\right), \quad P$ invertible;
- for J-unitaries: $(J, S) \mapsto\left(P^{*} J P, P^{-1} S P\right), \quad P$ invertible;

Canonical forms for symplectic matrices

Case 1: Complex J-symplectics $\left(J^{T}=-J, S^{T} J S=J\right)$

- eigenvalues occur in reciprocal pairs: if λ is an eigenvalue, then so is λ^{-1} with the same algebraic multiplicity;
- the pairing also occurs with respect to the Jordan structure;
- the pairing degenerates for $\lambda= \pm 1$;
- the total number m_{q} of Jordan blocks of size $2 q+1$ associated with the eigenvalue $\lambda=+1$ is even;
- the total number m_{r} of Jordan blocks of size $2 r+1$ associated with the eigenvalue $\lambda=-1$ is even;

Canonical forms for symplectic matrices

Case 2: Complex J-unitaries $\left(J^{*}=J, S^{*} J S=J\right)$

- eigenvalues occur in conjugate reciprocal pairs: if λ is an eigenvalue, then so is $\bar{\lambda}^{-1}$ with the same algebraic multiplicity;
- the pairing also occurs with respect to the Jordan structure;
- the pairing degenerates for unimodular eigenvalues λ (i.e., $|\lambda|=1$);
- unimodular eigenvalues have signs as additional invariants, e.g.,

$$
J=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad S_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad S_{2}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

S_{1} and S_{2} are similar, but the pairs $\left(J, S_{1}\right)$ and $\left(J, S_{2}\right)$ are not equivalent;

- the collection of signs is called the sign characteristic of (J, S);

Canonical forms for symplectic matrices

Case 3: Real J-symplectics $\left(J^{T}=-J, S^{T} J S=J\right)$

- eigenvalues occur in quadruplets: if λ is an eigenvalue, then so are $\bar{\lambda}$, λ^{-1}, and $\bar{\lambda}^{-1}$ with the same algebraic multiplicity;
- the pairing also occurs with respect to the Jordan structure;
- the pairing degenerates for unimodular eigenvalues λ (i.e., $|\lambda|=1$);
- unimodular eigenvalues have signs as additional invariants;
- the sign characteristics associated with λ and $\bar{\lambda}$ are related;
- the total numbers $m_{q, \pm}$ of Jordan blocks of size $2 q+1$ associated with the eigenvalues $\lambda= \pm 1$ are even;

Lagrangian subspaces

Definition:

1) Let $J \in \mathbb{F}^{2 n \times 2 n}$ be a skew-symmetric invertible matrix.

- A subspace $\mathcal{M} \subseteq \mathbb{F}^{2 n}$ is called J-Lagrangian if $\operatorname{dim} \mathcal{M}=n$ and

$$
y^{T} J x=0 \quad \text { for all } x, y \in \mathcal{M} .
$$

2) Let $J \in \mathbb{C}^{2 n \times 2 n}$ be a Hermitian matrix with n positive and n negative eigenvalues.

- A subspace $\mathcal{M} \subseteq \mathbb{C}^{2 n}$ is called J-Lagrangian if $\operatorname{dim} \mathcal{M}=n$ and

$$
y^{*} J x=0 \quad \text { for all } x, y \in \mathcal{M}
$$

J-Lagrangian subspaces are maximal J-neutral subspaces.

Lagrangian subspaces

Aim: Study J-Lagrangian subspaces that are invariant for a J-symplectic S.

Examples:

$$
\text { 1) } J=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], S=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \mathcal{M}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \text {; }
$$

\mathcal{M} is an S-invariant J-Lagrangian subspace;

$$
\text { 2) } J=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right], S=\left[\begin{array}{cc}
S_{1} & 0 \\
0 & \left(S_{1}^{-1}\right)^{T}
\end{array}\right], \mathcal{M}=\operatorname{span}\left(\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right]\right) \text {; }
$$

\mathcal{M} is an S-invariant J-Lagrangian subspace;
Special case: If S has no unimodular eigenvalues, then the invariant subspace associated with the eigenvalues inside the unit circle is J-Lagrangian.

Stability of Lagrangian subspaces

$$
\mathcal{L}(J, S):=\left\{\mathcal{M} \subseteq \mathbb{F}^{2 n}: \mathcal{M} \text { is } S \text {-invariant and } J \text {-Lagrangian }\right\}
$$

Definition: Let S, S^{\prime} be J-symplectic and let \mathcal{M} be an S-invariant J Lagrangian subspace.

1) \mathcal{M} is called stable if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left\|S-S^{\prime}\right\|<\delta \Rightarrow \exists \mathcal{M}^{\prime} \in \mathcal{L}\left(J, S^{\prime}\right): \operatorname{gap}(\mathcal{M}, \mathcal{M})<\varepsilon
$$

2) \mathcal{M} is called conditionally stable if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left\|S-S^{\prime}\right\|<\delta \text { and } \mathcal{L}\left(J, S^{\prime}\right) \neq \emptyset \Rightarrow \exists \mathcal{M}^{\prime} \in \mathcal{L}\left(J, S^{\prime}\right): \operatorname{gap}(\mathcal{M}, \mathcal{M})<\varepsilon
$$

Gap metric: $\operatorname{gap}(\mathcal{M}, \mathcal{N}):=\left\|P_{\mathcal{M}}-P_{\mathcal{N}}\right\|$;
($P_{\mathcal{M}}, P_{\mathcal{N}}$: orthogonal projections onto \mathcal{M}, \mathcal{N});

Stability of Lagrangian subspaces

Case 1: Complex J-symplectics $\left(J^{T}=-J, S^{T} J S=J\right)$

Theorem: Every J-symplectic matrix S has an invariant J-Lagrangian subspace associated with eigenvalues in the closed unit disc.

Theorem: The following assertions are equivalent for an S-invariant J Lagrangian subspace \mathcal{M} :

- \mathcal{M} is stable;
- \mathcal{M} is conditionally stable;
- $\operatorname{dim} \operatorname{Ker}(S+1) \leq 1$ and $\operatorname{dim} \operatorname{Ker}(S-1) \leq 1$

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;

What happens under perturbations?

- let $S \in \mathbb{R}^{2 n \times 2 n}$ be J-symplectic, resp., let $S \in \mathbb{C}^{2 n \times 2 n}$ be J-unitary;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;

Stability of Lagrangian subspaces

Case 2: Complex J-unitaries $\left(J^{*}=J, S^{*} J S=J\right)$

Theorem: Let S be J-unitary. There exists an S-invariant J-Lagrangian subspace if and only if for every unimodular eigenvalue $\omega \in \mathbb{C},|\omega|=1$, the number of odd partial multiplicities corresponding to ω is even, and the signs in the sign characteristic of S that correspond to these odd partial multiplicities sum up to zero.

Theorem: Let S be J-unitary. There exists a stable S-invariant J-Lagrangian subspace if and only if S has no unimodular eigenvalues.

Stability of Lagrangian subspaces

Case 2: Complex J-unitaries $\left(J^{*}=J, S^{*} J S=J\right)$

Theorem: Let S be J-unitary. There exists a conditionally stable S-invariant J-Lagrangian subspace if and only if every unimodular eigenvalue ω has only even partial multiplicities, and all the signs in the sign characteristic of S corresponding to ω are equal.

Stability of Lagrangian subspaces

Case 3: Real J-symplectics $\left(J^{T}=-J, S^{T} J S=J\right)$

Theorem: Let S be J-symplectic. There exists an S-invariant J-Lagrangian subspace if and only if for every unimodular eigenvalue $\omega \in \mathbb{C} \backslash \mathbb{R},|\omega|=1$, the number of odd partial multiplicities corresponding to ω is even, and the signs in the sign characteristic of S that correspond to these odd partial multiplicities sum up to zero.

Theorem: Let S be J-symplectic. There exists a stable S-invariant J Lagrangian subspace if and only if S has no unimodular eigenvalues.

Stability of Lagrangian subspaces

Case 3: Real J-symplectics $\left(J^{T}=-J, S^{T} J S=J\right)$

Theorem: Let S be J-symplectic. There exists a conditionally stable S invariant J-Lagrangian subspace if and only if:

1) every unimodular eigenvalue $\omega \neq \pm 1$ has only even partial multiplicities, and all the signs in the sign characteristic corresponding to ω are equal.
2) the eigenvalue 1 of S only has even partial multiplicities, say $2 n_{1}, \ldots, 2 n_{p}$, and if $\kappa_{1}, \ldots, \kappa_{p}$ are the corresponding signs, then

$$
(-1)^{n_{1}} \kappa_{1}=(-1)^{n_{2}} \kappa_{2}=\cdots=(-1)^{n_{p}} \kappa_{p} .
$$

3) the eigenvalue -1 of S only has even partial multiplicities, say $2 n_{1}^{\prime}, \ldots, 2 n_{p^{\prime}}^{\prime}$, and if $\kappa_{1}^{\prime}, \ldots, \kappa_{p^{\prime}}^{\prime}$ are the corresponding signs, then

$$
(-1)^{n_{1}^{\prime}} \kappa_{1}^{\prime}=(-1)^{n_{2}^{\prime}} \kappa_{2}^{\prime}=\cdots=(-1)^{n_{p^{\prime}}^{\prime}} \kappa_{p^{\prime}}^{\prime} .
$$

Index of stability of Lagrangian subspaces

Definition: Let S, S^{\prime} be J-symplectic and let \mathcal{M} be an S-invariant J Lagrangian subspace.

1) \mathcal{M} is called α-stable if there exists $\delta, K>0$ such that

$$
\left\|S-S^{\prime}\right\|<\delta \Rightarrow \exists \mathcal{M}^{\prime} \in \mathcal{L}\left(J, S^{\prime}\right): \operatorname{gap}(\mathcal{M}, \mathcal{M}) \leq K\left\|S-S^{\prime}\right\|^{1 / \alpha}
$$

2) $\alpha_{0} \geq 1$ is the index of stability of \mathcal{M} if \mathcal{M} is α_{0}-stable, but not α-stable for any $\alpha<\alpha_{0}$.
3) ... (analogously: conditional α-stability and index of conditional α-stability) ...

Open problem: For an α-stable S-invariant J-Lagrangian subspace determine the index of (conditional) α-stability if it exists. (So far: bounds and answers for special cases.)

Conclusions

- perturbation theory for J-Lagrangian invariant subspaces of J-symplectic matrices now complete;
- open problem: extend the results to palindromic matrix pencils and palindromic matrix polynomials;
- Reference: M., Mehrmann, Ran, Rodman. Perturbation analysis of Lagrangian invariant subspaces of symplectic matrices. MATHEON preprint, TU Berlin, 2006, available from http://www.matheon.de.

