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Palindromic polynomial eigenvalue problems

Application: vibration analysis of rail tracks excited by high speed trains

Finite element discretization leads to a palindromic eigenvalue problem(
λ2AT

0 + λA1 + A0

)
x = 0,

where A0, A1 ∈ Cn×n, AT
1 = A1, and A0 is highly singular.



Palindromic polynomial eigenvalue problems

More applications:

• simulation of surface acoustic wave (SAW) filters (Zaglmayr 2002)

• computation of the Crawford number (Higham/Tisseur/Van Dooren 2002)

Important task: (sometimes) compute the deflating subspace associated
with the eigenvalues inside (resp. outside) the unit circle

Question: What happens if there are eigenvalues close to the unit circle?

We need a perturbation theory for deflating subspaces!



Palindromics and symplectics

Helpful observation: Palindromic matrix polynomials are related to sym-
plectic matrices (Schröder 2005)

Example: P (λ) = λ2A + B + AT can be linearized as

LZ(λ) = λZ + ZT = λ

[
A B − AT

A A

]
+

[
AT AT

B − A AT

]
if −1 is not an eigenvalue of P (λ).

Z−1ZT is similar to a symplectic matrix if 1 is not an eigenvalue of P (λ).



Symplectic matrices

Symplectic matrices: S ∈ F2n×2n is called symplectic if

STJS = J, where J =

[
0 In

−In 0

]
.

Definition: (more general)

1) Let J ∈ F2n×2n be a skew-symmetric invertible matrix.

• A matrix S ∈ F2n×2n is called J-symplectic if STJS = J .

2) Let J ∈ Cm×m be a Hermitian invertible matrix.

• A matrix S ∈ Cm×m is called J-unitary if S∗JS = J .

Assumption: In 2), we assume J has n negative and n positive eigenvalues.
Then J is congruent to

i

[
0 In

−In 0

]
.



Canonical forms for symplectic matrices

Three cases:

• Complex J-symplectics (JT = −J, STJS = J);

• Real J-symplectics (JT = −J, STJS = J);

• Complex J-unitaries (J∗ = J, S∗JS = J);
(and J has n negative and n positive eigenvalues);

Transformations that preserve structure:

• for J-symplectics: (J, S) 7→ (P TJP, P−1SP ), P invertible;

• for J-unitaries: (J, S) 7→ (P ∗JP, P−1SP ), P invertible;



Canonical forms for symplectic matrices

Case 1: Complex J-symplectics (JT = −J, STJS = J)

• eigenvalues occur in reciprocal pairs: if λ is an eigenvalue, then so is λ−1

with the same algebraic multiplicity;

• the pairing also occurs with respect to the Jordan structure;

• the pairing degenerates for λ = ±1;

• the total number mq of Jordan blocks of size 2q + 1 associated with the
eigenvalue λ = +1 is even;

• the total number mr of Jordan blocks of size 2r + 1 associated with the
eigenvalue λ = −1 is even;



Canonical forms for symplectic matrices

Case 2: Complex J-unitaries (J∗ = J, S∗JS = J)

• eigenvalues occur in conjugate reciprocal pairs: if λ is an eigenvalue,

then so is λ
−1

with the same algebraic multiplicity;

• the pairing also occurs with respect to the Jordan structure;

• the pairing degenerates for unimodular eigenvalues λ (i.e., |λ| = 1);

• unimodular eigenvalues have signs as additional invariants, e.g.,

J =

[
0 1
−1 0

]
, S1 =

[
1 1
0 1

]
, S2 =

[
1 −1
0 1

]
;

S1 and S2 are similar, but the pairs (J, S1) and (J, S2) are not equivalent;

• the collection of signs is called the sign characteristic of (J, S);



Canonical forms for symplectic matrices

Case 3: Real J-symplectics (JT = −J, STJS = J)

• eigenvalues occur in quadruplets: if λ is an eigenvalue, then so are λ,

λ−1, and λ
−1

with the same algebraic multiplicity;

• the pairing also occurs with respect to the Jordan structure;

• the pairing degenerates for unimodular eigenvalues λ (i.e., |λ| = 1);

• unimodular eigenvalues have signs as additional invariants;

• the sign characteristics associated with λ and λ are related;

• the total numbers mq,± of Jordan blocks of size 2q + 1 associated with
the eigenvalues λ = ±1 are even;



Lagrangian subspaces

Definition:

1) Let J ∈ F2n×2n be a skew-symmetric invertible matrix.

• A subspace M⊆ F2n is called J-Lagrangian if dimM = n and

yTJx = 0 for all x, y ∈M.

2) Let J ∈ C2n×2n be a Hermitian matrix with n positive and n negative
eigenvalues.

• A subspace M⊆ C2n is called J-Lagrangian if dimM = n and

y∗Jx = 0 for all x, y ∈M.

J-Lagrangian subspaces are maximal J-neutral subspaces.



Lagrangian subspaces

Aim: Study J-Lagrangian subspaces that are invariant for a J-symplectic S.

Examples:

1) J =

[
0 1
−1 0

]
, S =

[
1 1
0 1

]
, M = span

([
1
0

])
;

M is an S-invariant J-Lagrangian subspace;

2) J =

[
0 In

−In 0

]
, S =

[
S1 0
0 (S−1

1 )T

]
, M = span

([
In

0

])
;

M is an S-invariant J-Lagrangian subspace;

Special case: If S has no unimodular eigenvalues, then the invariant sub-
space associated with the eigenvalues inside the unit circle is J-Lagrangian.



Stability of Lagrangian subspaces

L(J, S) := {M ⊆ F2n : M is S-invariant and J-Lagrangian}

Definition: Let S, S ′ be J-symplectic and let M be an S-invariant J-
Lagrangian subspace.

1) M is called stable if for every ε > 0 there exists δ > 0 such that

‖S − S ′‖ < δ ⇒ ∃M′ ∈ L(J, S ′) : gap (M,M) < ε.

2) M is called conditionally stable if for every ε > 0 there exists δ > 0
such that

‖S−S ′‖ < δ and L(J, S ′) 6= ∅ ⇒ ∃M′ ∈ L(J, S ′) : gap (M,M) < ε.

Gap metric: gap (M,N ) := ‖PM − PN‖;
(PM, PN : orthogonal projections onto M, N );



Stability of Lagrangian subspaces

Case 1: Complex J-symplectics (JT = −J, STJS = J)

Theorem: Every J-symplectic matrix S has an invariant J-Lagrangian sub-
space associated with eigenvalues in the closed unit disc.

Theorem: The following assertions are equivalent for an S-invariant J-
Lagrangian subspace M:

• M is stable;

• M is conditionally stable;

• dim Ker(S + 1) ≤ 1 and dim Ker(S − 1) ≤ 1



What happens under perturbations?

• let S ∈ R2n×2n be J-symplectic, resp., let S ∈ C2n×2n be J-unitary;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;
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What happens under perturbations?

• let S ∈ R2n×2n be J-symplectic, resp., let S ∈ C2n×2n be J-unitary;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;
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Stability of Lagrangian subspaces

Case 2: Complex J-unitaries (J∗ = J, S∗JS = J)

Theorem: Let S be J-unitary. There exists an S-invariant J-Lagrangian
subspace if and only if for every unimodular eigenvalue ω ∈ C, |ω| = 1,
the number of odd partial multiplicities corresponding to ω is even, and the
signs in the sign characteristic of S that correspond to these odd partial
multiplicities sum up to zero.

Theorem: Let S be J-unitary. There exists a stable S-invariant J-Lagrangian
subspace if and only if S has no unimodular eigenvalues.



Stability of Lagrangian subspaces

Case 2: Complex J-unitaries (J∗ = J, S∗JS = J)

Theorem: Let S be J-unitary. There exists a conditionally stable S-invariant
J-Lagrangian subspace if and only if every unimodular eigenvalue ω has only
even partial multiplicities, and all the signs in the sign characteristic of S
corresponding to ω are equal.



Stability of Lagrangian subspaces

Case 3: Real J-symplectics (JT = −J, STJS = J)

Theorem: Let S be J-symplectic. There exists an S-invariant J-Lagrangian
subspace if and only if for every unimodular eigenvalue ω ∈ C \R, |ω| = 1,
the number of odd partial multiplicities corresponding to ω is even, and the
signs in the sign characteristic of S that correspond to these odd partial
multiplicities sum up to zero.

Theorem: Let S be J-symplectic. There exists a stable S-invariant J-
Lagrangian subspace if and only if S has no unimodular eigenvalues.



Stability of Lagrangian subspaces

Case 3: Real J-symplectics (JT = −J, STJS = J)

Theorem: Let S be J-symplectic. There exists a conditionally stable S-
invariant J-Lagrangian subspace if and only if:

1) every unimodular eigenvalue ω 6= ±1 has only even partial multiplicities,
and all the signs in the sign characteristic corresponding to ω are equal.

2) the eigenvalue 1 of S only has even partial multiplicities, say 2n1, . . . , 2np,
and if κ1, . . . , κp are the corresponding signs, then

(−1)n1κ1 = (−1)n2κ2 = · · · = (−1)npκp.

3) the eigenvalue−1 of S only has even partial multiplicities, say 2n′1, . . . , 2n
′
p′,

and if κ′1, . . . , κ
′
p′ are the corresponding signs, then

(−1)n
′
1κ′1 = (−1)n

′
2κ′2 = · · · = (−1)

n′
p′κ′p′.



Index of stability of Lagrangian subspaces

Definition: Let S, S ′ be J-symplectic and let M be an S-invariant J-
Lagrangian subspace.

1) M is called α-stable if there exists δ,K > 0 such that

‖S − S ′‖ < δ ⇒ ∃M′ ∈ L(J, S ′) : gap (M,M) ≤ K‖S − S ′‖1/α.

2) α0 ≥ 1 is the index of stability of M if M is α0-stable, but not
α-stable for any α < α0.

3) ... (analogously: conditional α-stability and index of conditional
α-stability) ...

Open problem: For an α-stable S-invariant J-Lagrangian subspace deter-
mine the index of (conditional) α-stability if it exists. (So far: bounds and
answers for special cases.)



Conclusions

• perturbation theory for J-Lagrangian invariant subspaces of J-symplectic
matrices now complete;

• open problem: extend the results to palindromic matrix pencils and pa-
lindromic matrix polynomials;

• Reference: M., Mehrmann, Ran, Rodman. Perturbation analysis of
Lagrangian invariant subspaces of symplectic matrices. Matheon
preprint, TU Berlin, 2006, available from http://www.matheon.de.


