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Palindromic polynomial eigenvalue problems |

Application: vibration analysis of rail tracks excited by high speed trains

Finite element discretization leads to a palindromic eigenvalue problem
()\214% + )\Al + AQ)ZE = O,
where Ay, A, € C™", AT = A;, and Ay is highly singular.



Palindromic polynomial eigenvalue problems |

More applications:
e simulation of surface acoustic wave (SAW) filters (Zaglmayr 2002)
e computation of the Crawford number (Higham /Tisseur/Van Dooren 2002)

Important task: (sometimes) compute the deflating subspace associated
with the eigenvalues inside (resp. outside) the unit circle

Question: What happens if there are eigenvalues close to the unit circle?

We need a perturbation theory for deflating subspaces!



Palindromics and symplectics |

Helpful observation: Palindromic matrix polynomials are related to sym-
plectic matrices (Schréder 2005)

Example: P(\) = \?A + B + A’ can be linearized as

A B—AT]+[ AT AT]

LZ(A):)\Z+ZT:>\[A A B A AT

if —1 is not an eigenvalue of P(\).

Z1ZT is similar to a symplectic matrix if 1 is not an eigenvalue of P()\).



Symplectic matrices |

Symplectic matrices: S € F?**?" is called symplectic if

T . L 0 ]n
STJS = J, WhereJ—[_In O]'

Definition: (more general)
1) Let J € F?"**" be a skew-symmetric invertible matrix.

o A matrix S € F?"*?" is called J-symplectic if ST.JS = J.
2) Let J € C™*™ be a Hermitian invertible matrix.

e A matrix S € C"™*"™ is called J-unitary if S*JS = J.

Assumption: In 2), we assume J has n negative and n positive eigenvalues.
Then J is congruent to

10 I,

? :



Canonical forms for symplectic matrices |

Three cases:
e Complex J-symplectics (J! = —J, STJS = J);
e Real J-symplectics (J! = —J, STJS = J);

e Complex J-unitaries (J* = J, S*JS = J);
(and J has n negative and n positive eigenvalues);

Transformations that preserve structure:
o for J-symplectics: (J,S) — (PTJP, P"1SP), P invertible;
o for J-unitaries: (J, S) — (P*JP, P~'SP), P invertible;



Canonical forms for symplectic matrices |

Case 1: Complex J-symplectics (J! = —J, STJS = J)

e eigenvalues occur in reciprocal pairs: if ) is an eigenvalue, then so is A~
with the same algebraic multiplicity;

e the pairing also occurs with respect to the Jordan structure;
e the pairing degenerates for A\ = =£1;

e the total number m, of Jordan blocks of size 2q 41 associated with the
eigenvalue A = +1 is even;

e the total number m, of Jordan blocks of size 2r 4+ 1 associated with the
eigenvalue A = —1 is even;



Canonical forms for symplectic matrices |

Case 2: Complex J-unitaries (J* = J, S*JS = J)

e eigenvalues occur in conjugate reciprocal pairs: if A is an eigenvalue,
o~ . : T
then so is A~ with the same algebraic multiplicity;

e the pairing also occurs with respect to the Jordan structure;
Al =1);

e unimodular eigenvalues have signs as additional invariants, e.g.,

0 1 11 1 —1
=) s=ln] w=l]

S1 and S5 are similar, but the pairs (J, S1) and (J, S5) are not equivalent;

e the pairing degenerates for unimodular eigenvalues A (i.e.,

e the collection of signs is called the sign characteristic of (J,.5);



Canonical forms for symplectic matrices |

Case 3: Real J-symplectics (J! = —J, STJS =)

e ecigenvalues occur in quadruplets: if A\ is an eigenvalue, then so are \,
1 ~1 . : C e
A7, and A with the same algebraic multiplicity;

e the pairing also occurs with respect to the Jordan structure;

Al =1);

e the pairing degenerates for unimodular eigenvalues A (i.e.,
e unimodular eigenvalues have signs as additional invariants;
e the sign characteristics associated with A and \ are related;

e the total numbers m, 1 of Jordan blocks of size 2q + 1 associated with
the eigenvalues A = +£1 are even;



Lagrangian subspaces |

Definition:
1) Let J € F*"*" be a skew-symmetric invertible matrix.

e A subspace M C F?" is called .J-Lagrangian if dim M = n and
y'Jr =0 forall z,y € M.

2) Let J € C**" be a Hermitian matrix with n positive and n negative
eigenvalues.

e A subspace M C C*" is called J-Lagrangian if dim M = n and
y*Jr=0 forall z,y e M.

J-Lagrangian subspaces are maximal .J-neutral subspaces.



Lagrangian subspaces |

Aim: Study J-Lagrangian subspaces that are invariant for a .J-symplectic S.

Examples:

o[22 [ oweam (1)

M is an S-invariant J-Lagrangian subspace;
| 0 I 1S5S0 B I |,
205 55 [3 o (5])
M is an S-invariant J-Lagrangian subspace;

Special case: If S has no unimodular eigenvalues, then the invariant sub-
space associated with the eigenvalues inside the unit circle is .J-Lagrangian.



Stability of Lagrangian subspaces |

L(J,S) = {M CF*: Mis S-invariant and J-Lagrangian}

Definition: Let S, S’ be J-symplectic and let M be an S-invariant J-
Lagrangian subspace.

1) M is called stable if for every ¢ > 0 there exists § > 0 such that
1S — S| <0 = IM e L(JS) : gap(M,M) <e.

2) M is called conditionally stable if for every € > 0 there exists § > 0
such that

|S—S'|| < dand L(J,S)#£0 = IM € L(J,S) : gap(M,M) <e.

Gap metric: gap (M, N) .= || Py — Py|;
(P, Py orthogonal projections onto M, N);



Stability of Lagrangian subspaces |

Case 1: Complex J-symplectics (J! = —J, STJS = J)

Theorem: Every J-symplectic matrix S has an invariant J-Lagrangian sub-
space associated with eigenvalues in the closed unit disc.

Theorem: The following assertions are equivalent for an S-invariant J-
Lagrangian subspace M:

e M is stable;
e M is conditionally stable;
e dim Ker(S 4+ 1) <1 and dim Ker(S — 1) <1



What happens under perturbations? |

o let S € R?"*?" be J-symplectic, resp., let S € C*"*?" be J-unitary;
e let S have two close unimodular eigenvalues with opposite signs;

e if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;
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What happens under perturbations? |

o let S € R?"*?" be J-symplectic, resp., let S € C*"*?" be J-unitary;
e let S have two close unimodular eigenvalues with equal signs;

e if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;
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Stability of Lagrangian subspaces |

Case 2: Complex J-unitaries (J* = J, S*JS = J)

Theorem: Let S be J-unitary. There exists an S-invariant J-Lagrangian
subspace if and only if for every unimodular eigenvalue w € C, |w| = 1,
the number of odd partial multiplicities corresponding to w is even, and the
signs in the sign characteristic of .S that correspond to these odd partial
multiplicities sum up to zero.

Theorem: Let S be J-unitary. There exists a stable S-invariant J-Lagrangian
subspace if and only if S has no unimodular eigenvalues.



Stability of Lagrangian subspaces |

Case 2: Complex J-unitaries (J* = J, S*JS = J)

Theorem: Let S be J-unitary. There exists a conditionally stable S-invariant
J-Lagrangian subspace if and only if every unimodular eigenvalue w has only
even partial multiplicities, and all the signs in the sign characteristic of S
corresponding to w are equal.



Stability of Lagrangian subspaces |

Case 3: Real J-symplectics (J! = —J, STJS =)

Theorem: Let S be J-symplectic. There exists an S-invariant J-Lagrangian
subspace if and only if for every unimodular eigenvalue w € C\ R, |w| =1,
the number of odd partial multiplicities corresponding to w is even, and the
signs in the sign characteristic of .S that correspond to these odd partial
multiplicities sum up to zero.

Theorem: Let S be J-symplectic. There exists a stable S-invariant J-
Lagrangian subspace if and only if .S has no unimodular eigenvalues.



Stability of Lagrangian subspaces |

Case 3: Real J-symplectics (J! = —J, STJS =)

Theorem: Let S be J-symplectic. There exists a conditionally stable .S-
invariant J-Lagrangian subspace if and only if:

1) every unimodular eigenvalue w # +1 has only even partial multiplicities,
and all the signs in the sign characteristic corresponding to w are equal.

2) the eigenvalue 1 of S only has even partial multiplicities, say 2n4, . . ., 2n,,
and if K1, ..., k, are the corresponding signs, then
(—1)"ky = (—1)kry = -+ = (—1)"RK,,.
3) the eigenvalue —1 of S only has even partial multiplicities, say 2n/, . . ., Zn;,,
and if Ky, ..., K, are the corresponding signs, then

/
n.,

(1) = (1) = o = (1),



Index of stability of Lagrangian subspaces |

Definition: Let S, S’ be J-symplectic and let M be an S-invariant J-
Lagrangian subspace.

1) M is called a-stable if there exists 9, K > 0 such that
1S—S5|<d6= IM €L(J5S) : gap (M, M) < K|S — 5"

2) ap > 1 is the index of stability of M if M is «g-stable, but not
a-stable for any o < «y.

3) ... (analogously: conditional a-stability and index of conditional
a-stability) ...

Open problem: For an a-stable S-invariant J-Lagrangian subspace deter-
mine the index of (conditional) a-stability if it exists. (So far: bounds and
answers for special cases.)



Conclusions |

e perturbation theory for J-Lagrangian invariant subspaces of J-symplectic
matrices now complete;

e open problem: extend the results to palindromic matrix pencils and pa-
lindromic matrix polynomials;

e Reference: M., Mehrmann, Ran, Rodman. Perturbation analysis of
Lagrangian invariant subspaces of symplectic matrices. MATHEON
preprint, TU Berlin, 2006, available from http://www.matheon.de.



