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Higher order DAEs and nonlinear eigenvalue problems

Nonlinear eigenvalue problems are usually motivated by the solution
of linear higher order differential equations.

k∑
i=0

Aix (i) = f (t).

The dynamics of this DAE can be analyzed via the spectral properties
of the polynomial eigenvalue problem

(
k∑

i=0

Aiλ
i)x = 0.
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First order fomulations, ‘Linearization’

Introduce new variables

yT =
[

y1, y2, . . . , yk
]T

=
[

x , ẋ , . . . , x (k−1)
]T

to turn the high order system into first order system

Eẏ + Ay = g

with the associated linear matrix polynomial

L(λ) = λE + A.
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Linearization

Definition: For a n × n matrix polynomial P(λ), a matrix pencil
L(λ) = λE + A of size nk × nk is called linearization of P(λ), if there
exist nonsingular unimodular matrices (i.e., of constant nonzero
determinant) S(λ), T (λ) such that

S(λ)L(λ)T (λ) = diag(P(λ), I(k−1)n).
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Difficulties with this definition of linearization

I Linearization preserves the algebraic and geometric
multiplicities of all finite eigenvalues.

I Classical linearization produces unnecessary long
eigenvector/principal vector chains for eigenvalue ∞.

I There are difficulties in the proper representation of the singular
part.

I Linearization theory for matrix polynomials does not match the
theory for DAEs.
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Do we need to transform to first order?
Pros

I Simpler analysis for first order systems and linear ev. problems.

I Not good methods for matrix polynomials.

I No generalization of Kronecker form for matrix polynomials.

Cons

I The solvability of the equation may be destroyed for DAEs,
M./Shi 2006.

I The condition number (sensitivity) may increase. De Boor/Kreiss
pardoxon 1986.

I Standard intergration numerical methods may fail. Sand 2002.

I The size of the problem is increased and symmetry structures
may be lost.
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First order form in Linear Algebra

The Euler-Lagrange equations of a linear constrained and damped
mechanical system have the form

Mẍ + Dẋ + Kx + GT µ = f (t)
Gx = 0.

Here M, D, K are mass, damping and stiffness matrices, G describes
the constraint, f a forcing function and µ the Lagrange multiplier.
The associated matrix polynomial is

P(λ) = λ2
[

M 0
0 0

]
+ λ

[
D 0
0 0

]
+

[
K GT

G 0

]
.

If M is positive definite and G has full row rank, then P(λ) has chains
associated with the eigenvalue ∞ of length 4.
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First order form in DAE theory

In multibody dynamics one introduces the new variable y = ẋ and not
a variable γ = µ̇. This gives the first order system

Mẏ + Dy + Kx + GT µ = f (t),
ẋ = y ,

Gx = 0

or the associated linear matrix pencil

L̃(λ) = λ

 M 0 0
0 I 0
0 0 0

 +

 D K GT

−I 0 0
0 G 0

 ,

which has a chain associated with ∞ of length 3.
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Different goals in Linear Algebra/DAE theory

I In the eigenvalue problem we want to know eigenvalues,
eigenvectors, deflating subspaces, the length of chains
associated with eigenvalues, and canonical forms.

I In the differential equation we want the solution, study the
dynamics of the system, analyze stability, resonances, etc.

I The motivation for the study of eigenvalue problems arises from
differential equations.

I The theories and definitions should match.
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First index reduction, then spectral analysis

In numerical methods for first order DAEs, chains longer than 1
associated to ∞ or singular parts lead to numerical difficulties.

I The length of infinite and singular chains determine the
smoothness requirements for the inhomogeneity f .

I Using linear combinations of derivatives of equations
(unimodular transformations), reformulate the DAE as
Ê ẋ = Âx + f̂ where all the eigenvalues ∞ are simple, and the
right singular parts do not have chains either. ( Index reduction,
strangeness-free formulation). See book: Kunkel/M. 2006

I One solves the alternative system (with the same solution).

I One analyzes the spectral properties of Ê ẋ = Âx + f̂ .
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First normal form then index reduction

Alternatively we can first compute normal forms.

I Transform to Kronecker/Weierstrass or staircase form first.

I Perform index reduction and reformulate via the normal form.

I Solve the transformed system analytically or numerically.

I Analyze the spectral properties via the normal form.

Index reduction and computation of spectral properties (associated
with the finite spectrum) commute.
For first order DAEs both procedures are equivalent.
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First order vs higher order

I For order larger than 1 we do not have a canonical form.

I Different first order formulations have different smoothness
requirements.

I Companion first order form (linearization) may have stronger
smoothness requirements for inhomogeneity than necessary,
since unnecessary derivatives of variables are inroduced.

I The proper treatment of singular blocks is unclear.

I Linearization and index reduction do not commute since
they may lead to different smoothness requirements.

I Under small perturbations the systems may behave very
different.
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A simple example

Consider the DAE[
1 0
0 0

] [
ẍ
µ̈

]
+

[
1 0
0 0

] [
ẋ
µ̇

]
+

[
1 1
1 0

] [
x
µ

]
=

[
f1
f2

]
.

Index reduction (inserting the derivatives of the second equation into
the first) gives the first order DAE[

0 1
1 0

] [
x
µ

]
=

[
f1 − f2 − ḟ2 − f̈2

f2

]
.

This is first order, no first order formulation is necessary.
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The associated matrix polynomial

P(λ) =

[
λ2 + λ + 1 1

1 0

]
has only the eigenvalue ∞. Using a unimodular transformation from
the left with

Q(λ) =

[
1 −(λ2 + λ + 1)
0 1

]
we obtain the first order

T (λ) = Q(λ)P(λ) =

[
0 1
1 0

]
which has only degree 0.
Is this a polynomial of degree 2, or 1 with leading coefficients 0.
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Suggested trimmed linearization procedure

I Compute (structured) normal form or staircase form associated
with the eigenvalue ∞ and the singular part for high order DAE
(matrix polynomial).

I Reduce index (chains) associated with these parts via linear
combinations of derivatives of some equations (unimodular
transformations) until the infinite eigenvalues are all simple and
the singular blocks have no chains

I Perform order reduction (linearization) on the resulting system
(matrix polynomial.)

This avoids unnecessary chains associated with ∞ and singular parts
and therefore also unnecessary smoothness requirements.
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Linearization

New Definition: For a matrix polynomial P(λ), a matrix pencil
L(λ) = λE + A of size `× ` is called linearization of the n × n matrix
polynomial P(λ), if there exist nonsingular unimodular matrices (i.e.,
of constant nonzero determinant) S(λ), T (λ) such that

S(λ)L(λ)T (λ) = diag(P(λ), I`−n).
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Theorem M./Shi 2006
Consider a linear DAE

Alx (l) + Al−1x (l−1) + · · ·+ A0x = f (t)

The system is equivalent to a system

x̃ (l)
1 +

l−1∑
i=0

l−1∑
j=i

A〈i〉
1,l−j x̃

(i)
l−j +

l−1∑
i=0

A〈i〉
1,l+2x̃ (i)

l+2 = f̃1(t),

x̃ (l−2)
2 +

l−2∑
i=0

l−2∑
j=i

A〈i〉
2,l−1−j x̃

(i)
l−1−j +

l−2∑
i=0

(
A〈i〉

2,1x̃ (i)
1 + A〈i〉

2,l+2 x̃ (i)
l+2

)
= f̃2(t),

...
x̃ (0)

l+1 = f̃l+1(t),

0 = f̃l+2.
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Properties of this system
I Partial normal (Kronecker/Smith) form associated with ∞ and

right singular chains.
I Existence, uniqueness of solutions, consistency of initial

conditions, and minimal smoothness requirements for f
(perturbation index µ) can be read off.

I All right singular chains and chains at ∞ have length 0.
I First order form without introducing unnecessary variables.
I Solutions are in one-to-one correspondence, since no linear

combinations with derivatices are used from the right.
I Computation of this form is not numerically stable.
I A derivative array approach gives analogous results and can be

implemented numerically.
I Structure is not preserved, we would rather like a staircase form.
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Theorem Byers/M./Xu 2007 Staircase form.
Let Ai ∈ Cm,n i = 0, . . . , k . Then, the tuple (Ak , . . . , A0) is unitarily
equivalent to a matrix tuple (Âk , . . . , Â0) = (UAk V , . . . , UA0V ), where
all terms Âi , i = 0, . . . , k , have the form266666666666666666666666666664
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Properties of this staircase form

I Each of the blocks A(i)
j i = 0, . . . , k , j = 1, . . . , l either has the

form
[

Σ 0
]

or
[

0 0
]
,

I Each of the blocks Ã(i)
j i = 1, . . . , k , j = 1, . . . , l either has the

form
[

Σ
0

]
or

[
0
0

]
.

I For each j only of the A(i)
j and Ã(i)

j is nonzero.

I In the tuple of middle blocks (A(k)
0 , . . . , A(k)

0 ) (essentially) no k of
the coefficients have a common nullspace.

I In structured case we use congruence to preserve the structure.

I If we include also index reduction then we can proceed further.
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Theorem Byers/M./Xu 07 The staircase procedure combined with
index reduction will end up with a tuple of middle blocks
(A(k)

0 , . . . , A(k)
0 ) which has a growing anti-triangular block-structure

0BBBBBBBBBB@

2666666664
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266666666664

A(k−1)
11 A(k−1)

12 0 . . . 0
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3777777777775
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26666666666664
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12 . . . . . . A(0)
1,k
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.

.
. . . . . . . . . A(0)

2,k
.
.
.

.
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. . . . . .
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37777777777775

1CCCCCCCCCCCCA

associated with a regular matrix polynomial that has only simply
eigenvalues associated with ∞.
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Consequences

I Singular parts can be deflated.

I All the long chains associated with ∞ can be deflated.

I We obtain trimmed linearizations.

I Reversing the order of the middle block, we can do the same for
eigenvalue 0.

I The transformation can be done in a structure preserving way.

I Structure preserving trimmed linearizations can be obtained.
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Conclusions and future work.

I DAEs and nonlinear eigenvalue problems are important in many
applications.

I The mathematical treatment does not match.

I Index reduction and linearization do not commute.

I New trimmed linearization techniques are available.

I Structured staircase forms have been derived.

I Deflation of eigenvalues and singular blocks directly in nonlinear
problem is possible.

I Code implementation is still to be done.
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Thank you very much
for your attention.

information, papers, codes etc
http://www.math.tu-berlin.de/˜mehrmann
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