

Frequency isolation algorithms for hyperbolic quadratic eigenvalue problems

Julio Moro

Departamento de Matemáticas Universidad Carlos III de Madrid Madrid (Spain)

Joint work with Juan Egaña and Fernando de Terán

Berlin-Manchester Workshop '07

Manchester, March 22nd '07

3

The algorithms

- The basic isolation algorithm
- A continuation algorithm

3 Numerical results

- Box vs. basic
- Box vs. continuation

< ≣⇒

Hyperbolic QEPs

• Consider quadratic e-value problem (QEP)

$$Q(\lambda)u = (\lambda^2 M + \lambda C + K)u = 0.$$

with M, C, K symmetric, positive definite $n \times n$.

(E) < E)</p>

э

Hyperbolic QEPs

• Consider quadratic e-value problem (QEP)

$$Q(\lambda)u = (\lambda^2 M + \lambda C + K)u = 0.$$

with M, C, K symmetric, positive definite $n \times n$.

• QEP is hyperbolic if

$$(x^{T}Cx)^{2} - 4(x^{T}Mx)(x^{T}Kx) > 0$$

for all $x \neq 0$.

프 🖌 🛪 프 🛌

э

Hyperbolic QEPs

• Consider quadratic e-value problem (QEP)

$$Q(\lambda)u = (\lambda^2 M + \lambda C + K)u = 0.$$

with M, C, K symmetric, positive definite $n \times n$.

• QEP is hyperbolic if

$$(x^{T}Cx)^{2} - 4(x^{T}Mx)(x^{T}Kx) > 0$$

for all $x \neq 0$.

- Nice properties of hyperbolic QEPs:
 - -2n real and semisimple e-values
 - e-values can be obtained by bisection

프 🖌 🛪 프 🛌

The frequency isolation problem

When e-values of

$$Q(\lambda) = \lambda^2 M + \lambda C + K$$

fall in certain regions, vibrational system experiences dangerous vibrations (resonance). M, C, K should be chosen in such a way that these spectral regions are avoided

< 3 >

The frequency isolation problem

When e-values of

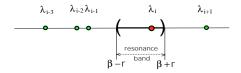
$$Q(\lambda) = \lambda^2 M + \lambda C + K$$

fall in certain regions, vibrational system experiences dangerous vibrations (resonance). M, C, K should be chosen in such a way that these spectral regions are avoided

• Typically, dangerous region modelled as resonance band

$$I_r = (\beta - r, \beta + r) \subset \mathbb{R},$$

to be avoided by e-values λ_i of $Q(\lambda)$.



- < ∃ →

The frequency isolation problem

When e-values of

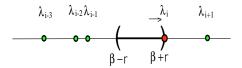
$$Q(\lambda) = \lambda^2 M + \lambda C + K$$

fall in certain regions, vibrational system experiences dangerous vibrations (resonance). M, C, K should be chosen in such a way that these spectral regions are avoided

• Typically, dangerous region modelled as resonance band

$$I_r = (\beta - r, \beta + r) \subset \mathbb{R},$$

to be avoided by e-values λ_j of $Q(\lambda)$. Once no eigenvalue is in I_r , we say that spectrum has been isolated



The frequency isolation problem

When e-values of

$$Q(\lambda) = \lambda^2 M + \lambda C + K$$

fall in certain regions, vibrational system experiences dangerous vibrations (resonance). M, C, K should be chosen in such a way that these spectral regions are avoided

• Typically, dangerous region modelled as resonance band

$$I_r = (\beta - r, \beta + r) \subset \mathbb{R},$$

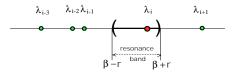
to be avoided by e-values λ_j of $Q(\lambda)$. Once no eigenvalue is in I_r , we say that spectrum has been isolated

Frequency isolation problem: Given a resonance band $I_r = (\beta - r, \beta + r)$ and a vibrational system (M, C, K) with some eigenvalue in $(\beta - r, \beta + r)$, **redesign the system** in such a way that the new system (M^*, C^*, K^*)

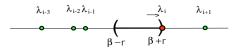
- has no eigenvalue in the resonance band, and
- is close to (M, C, K) in some sense.

Frequency isolation algorithms: the undamped case

Egaña, Kuhl & Santos '02: Tridiagonal QEP with C = 0 (no damping). Given initial, resonant spectrum



fix target spectrum, e.g.

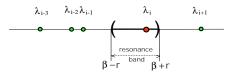


and reconstruct matrices M^* and K^* with that spectrum, i.e., solve tridiagonal inverse eigenvalue problem

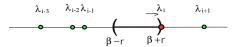
э

Frequency isolation algorithms: the undamped case

Egaña, Kuhl & Santos '02: Tridiagonal QEP with C = 0 (no damping). Given initial, resonant spectrum



fix target spectrum, e.g.

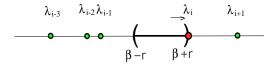


and reconstruct matrices M^* and K^* with that spectrum, i.e., solve tridiagonal inverse eigenvalue problem

Very expensive: cost well over $O(n^4)$ + quite restrictive conditions.

How to improve it?

Fixing a target spectrum is unnatural, since "good" eigenvalues are not allowed to change at all

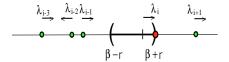


프 🖌 🛪 프 🛌

э

How to improve it?

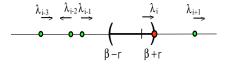
Should allow "good" eigenvalues to move around (maybe not too much)



< ≣ >

How to improve it?

Should allow "good" eigenvalues to move around (maybe not too much)



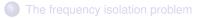
Idea of new algorithm: Identify a direction in (M, C, K) space along which:

- variation of "bad" eigenvalues is maximal, and
- variation of "good" eigenvalues is minimal.

Then, modify (M, C, K) along this direction up to isolation.

- < ∃ →

Outline



2 The algorithms

- The basic isolation algorithm
- A continuation algorithm

3 Numerical results

- Box vs. basic
- Box vs. continuation

< ≣⇒

A simple situation

As an example, consider hyperbolic QEP

$$Q(\lambda) = \lambda^2 M + \lambda C + K$$

with

$$M = \operatorname{diag}(m) = \operatorname{diag}(m_1, \dots, m_n), \qquad m_i > 0,$$

$$C = \operatorname{diag}(c) = \operatorname{diag}(c_1, \dots, c_n), \qquad c_i > 0,$$

$$K = \begin{bmatrix} k_1 + k_2 & -k_2 & & \\ -k_2 & k_2 + k_3 & -k_3 & & \\ & \ddots & \ddots & \ddots & \\ & & -k_{n-1} & k_{n-1} + k_n & -k_n \\ & & & -k_n & k_n \end{bmatrix}, \quad k_j > 0$$

듣▶ ★ 돋♪

The basic isolation algorithm

A simple situation

As an example, consider hyperbolic QEP

$$Q(\lambda) = \lambda^2 M + \lambda C + K$$

with

$$M = \operatorname{diag}(m) = \operatorname{diag}(m_1, \dots, m_n), \qquad m_i > 0,$$

$$C = \operatorname{diag}(c) = \operatorname{diag}(c_1, \dots, c_n), \qquad c_i > 0,$$

$$\mathcal{K} = \begin{bmatrix}
k_1 + k_2 & -k_2 & & \\
-k_2 & k_2 + k_3 & -k_3 & & \\
& \ddots & \ddots & \ddots & \\
& & -k_{n-1} & k_{n-1} + k_n & -k_n \\
& & & -k_n & k_n
\end{bmatrix}, \quad k_i > 0$$

 $\lambda_j = \lambda_j(m, c, k) \quad \text{for} \quad (m, c, k) = (m_1, \dots, m_n, c_1, \dots, c_n, k_1, \dots, k_n) \in \mathbb{R}^{3n}.$ Thus,

Work in parameter space (m, c, k) instead of in matrix space (M, C, K)

The basic isolation algorithm

How to choose directions in (m, c, k) space?

• Consider initial configuration

 $(m, c, k) = (m_1, ..., m_n, c_1, ..., c_n, k_1, ..., k_n) \in \mathbb{R}^{3n}$, and call good e-values those s.t. $\lambda_j(m, c, k) \notin (\beta - r, \beta + r)$ bad e-values those s.t. $\lambda_j(m, c, k) \in (\beta - r, \beta + r)$

E > < E >

3

The basic isolation algorithm A continuation algorithm

How to choose directions in (m, c, k) space?

- Consider initial configuration $(m, c, k) = (m_1, ..., m_n, c_1, ..., c_n, k_1, ..., k_n) \in \mathbb{R}^{3n}$, and call good e-values those s.t. $\lambda_j(m, c, k) \notin (\beta - r, \beta + r)$ bad e-values those s.t. $\lambda_j(m, c, k) \in (\beta - r, \beta + r)$
- Want to move bad e-values out of resonance band as fast as possible, without any good e-value entering the band.

3

The basic isolation algorithm A continuation algorithm

How to choose directions in (m, c, k) space?

- Consider initial configuration $(m, c, k) = (m_1, ..., m_n, c_1, ..., c_n, k_1, ..., k_n) \in \mathbb{R}^{3n}$, and call good e-values those s.t. $\lambda_j(m, c, k) \notin (\beta - r, \beta + r)$ bad e-values those s.t. $\lambda_j(m, c, k) \in (\beta - r, \beta + r)$
- Want to move bad e-values out of resonance band as fast as possible, without any good e-value entering the band.
- Assume we are close to isolation. Let $\Delta = (\delta m, \delta c, \delta k) \in \mathbb{R}^{3n}$, and write perturbed e-values as

$$\lambda_j((m,c,k)+\Delta) = \lambda_j(m,c,k) + \langle \nabla \lambda_j(m,c,k), \Delta \rangle + \dots$$

★ E → ★ E → E

The basic isolation algorithm A continuation algorithm

How to choose directions in (m, c, k) space?

- Consider initial configuration $(m, c, k) = (m_1, ..., m_n, c_1, ..., c_n, k_1, ..., k_n) \in \mathbb{R}^{3n}$, and call good e-values those s.t. $\lambda_j(m, c, k) \notin (\beta - r, \beta + r)$ bad e-values those s.t. $\lambda_j(m, c, k) \in (\beta - r, \beta + r)$
- Want to move bad e-values out of resonance band as fast as possible, without any good e-value entering the band.
- Assume we are close to isolation. Let $\Delta = (\delta m, \delta c, \delta k) \in \mathbb{R}^{3n}$, and write perturbed e-values as

$$\lambda_j((m,c,k)+\Delta) = \lambda_j(m,c,k) + \langle \nabla \lambda_j(m,c,k), \Delta \rangle + \dots$$

• First order term $\langle \nabla \lambda_i(m, c, k), \Delta \rangle$ should be:

1) as large as possible for bad λ_i

2) as small as possible for good λ_i

The basic isolation algorithm A continuation algorithm

How to choose directions in (m, c, k) space?

- Consider initial configuration $(m, c, k) = (m_1, ..., m_n, c_1, ..., c_n, k_1, ..., k_n) \in \mathbb{R}^{3n}$, and call good e-values those s.t. $\lambda_j(m, c, k) \notin (\beta - r, \beta + r)$ bad e-values those s.t. $\lambda_i(m, c, k) \in (\beta - r, \beta + r)$
- Want to move bad e-values out of resonance band as fast as possible, without any good e-value entering the band.
- Assume we are close to isolation. Let $\Delta = (\delta m, \delta c, \delta k) \in \mathbb{R}^{3n}$, and write perturbed e-values as

 $\lambda_j((m,c,k)+\Delta) = \lambda_j(m,c,k) + \langle \nabla \lambda_j(m,c,k), \Delta \rangle + \dots$

• First order term $\langle \nabla \lambda_i(m, c, k), \Delta \rangle$ should be:

1) as large as possible for bad λ_i

2) as small as possible for good $\lambda_i \rightarrow \text{zero}$ for good λ_i i.e.,

 $\Delta \perp \nabla \lambda_i(m, c, k)$ for all good λ_i .

The basic isolation algorithm

Since

$$\Delta = (\delta m, \delta c, \delta k) \perp \nabla \lambda_j(m, c, k) \quad \text{for all } \text{good } \lambda_j,$$

denote

$$V_{good}^{\perp} = \{ w \in \mathbb{R}^{3n} : < \nabla \lambda_j(m, c, k), w > = 0 \text{ for all good } \lambda_j \}.$$

Basic isolation algorithm organized in two stages:

프 🖌 🛪 프 🕨

The basic isolation algorithm

Since

$$\Delta = (\delta m, \delta c, \delta k) \perp \nabla \lambda_j(m, c, k) \quad \text{for all} \quad \text{good} \ \lambda_j,$$

denote

$$V_{qood}^{\perp} = \{ w \in \mathbb{R}^{3n} : < \nabla \lambda_j(m, c, k), w > = 0 \text{ for all good } \lambda_j \}.$$

Basic isolation algorithm organized in two stages:

1) Find a direction $w_{max} \in V_{good}^{\perp}$ s.t. velocities

 $< \nabla \lambda_j(m,c,k), w_{\max} > \text{ for bad } \lambda_j$

are maximal among $w \in V_{good}^{\perp}$.

The basic isolation algorithm

Since

$$\Delta = (\delta m, \delta c, \delta k) \perp \nabla \lambda_j(m, c, k) \quad \text{for all } \text{good } \lambda_j,$$

denote

$$V_{qood}^{\perp} = \{ w \in \mathbb{R}^{3n} : < \nabla \lambda_j(m, c, k), w > = 0 \text{ for all good } \lambda_j \}.$$

Basic isolation algorithm organized in two stages:

1) Find a direction $w_{max} \in V_{good}^{\perp}$ s.t. velocities

 $< \nabla \lambda_j(m,c,k), w_{\max} > \text{ for bad } \lambda_j$

are maximal among $w \in V_{good}^{\perp}$.

2) Given w_{max} from **Stage 1**), find smallest $\alpha^* \in \mathbb{R}$ s.t. e-values corresp. to

$$(m^*, c^*, k^*) = (m, c, k) + \alpha^* w_{max}$$

are all outside the resonance band.

The basic isolation algorithm A continuation algorithm

Implementation of Stage 1): finding w_{max}

Stage 1) Find optimal direction w_{max} in V_{good}^{\perp} .

Need to compute:

(E) < E)</p>

The basic isolation algorithm A continuation algorithm

Implementation of Stage 1): finding w_{max}

Stage 1) Find optimal direction w_{max} in V_{good}^{\perp} .

Need to compute:

Directional derivatives of e-values →

→ requires all eigenvectors of initial QEP

E > < E >

The basic isolation algorithm A continuation algorithm

Implementation of Stage 1): finding w_{max}

Stage 1) Find optimal direction w_{max} in V_{good}^{\perp} .

Need to compute:

Directional derivatives of e-values →

→ requires all eigenvectors of initial QEP

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Orthonormal basis of V_{good}^{\perp} (e.g., via QR factorization)

The basic isolation algorithm A continuation algorithm

Implementation of Stage 1): finding w_{max}

Stage 1) Find optimal direction w_{max} in V_{good}^{\perp} .

Need to compute:

Directional derivatives of e-values →

→ requires all eigenvectors of initial QEP

ヘロト 人間 ト くほ ト くほ ト 二日

- Orthonormal basis of V_{good}^{\perp} (e.g., via QR factorization)
- $w_{\rm max} \equiv {
 m singular \, vector \, corresp.}$ to $\sigma_{\rm max}$ of scalar product matrix

OVERALL COST: $O(n^3)$

The basic isolation algorithm A continuation algorithm

Implementation of Stage 2): detecting isolation

Stage 2) Given optimal direction $w_{\max} \in V_{good}^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that spectrum of $(m, c, k) + \alpha^* w_{\max}$

has been isolated

프 🖌 🛪 프 🛌

The basic isolation algorithm A continuation algorithm

Implementation of Stage 2): detecting isolation

Stage 2) Given optimal direction $w_{max} \in V_{good}^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that spectrum of $(m, c, k) + \alpha^* w_{max}$ has been isolated

QEP is hyperbolic \longrightarrow can use bisection on α to find how many e-values of

 $(m, c, k) + \alpha w_{\max}$

are inside the resonance band $(\beta - r, \beta + r)$. Stop as soon as that number becomes zero.

Implementation of Stage 2): detecting isolation

Stage 2) Given optimal direction $w_{max} \in V_{good}^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that spectrum of $(m + k) + m^* m$

 $(m,c,k)+\alpha^* w_{\max}$

has been isolated

QEP is hyperbolic \longrightarrow can use bisection on α to find how many e-values of

 $(m, c, k) + \alpha w_{\max}$

are inside the resonance band $(\beta - r, \beta + r)$. Stop as soon as that number becomes zero.

COST: O(n) per bisection step

(1日) (1日) (1日)

The basic isolation algorithm A continuation algorithm

Preservation of structure

BUT all this can only be done provided the relevant structure is preserved:

프 🖌 🛪 프 🕨

э

The basic isolation algorithm A continuation algorithm

Preservation of structure

BUT all this can only be done provided the relevant structure is preserved:

• Entries of $m + \alpha^* \delta m$, $k + \alpha^* \delta k$, $c + \alpha^* \delta c$ must remain positive: \longrightarrow positivity constraints on α .

글 🖌 🖌 글 🕨

Preservation of structure

BUT all this can only be done provided the relevant structure is preserved:

- Entries of m+a^{*}δm, k+a^{*}δk, c+a^{*}δc must remain positive: → positivity constraints on a.
- New system (M^{*}, C^{*}, K^{*}) must stay hyperbolic: hyperbolicity constraints on α: use results on distance to nearest non-hyperbolic QEP

Higham, Tisseur & Van Dooren '02

프 에 에 프 어

easiest case: fix M and K, only change C

Preservation of structure

BUT all this can only be done provided the relevant structure is preserved:

- Entries of m+a^{*}δm, k+a^{*}δk, c+a^{*}δc must remain positive: → positivity constraints on a.
- New system (M^{*}, C^{*}, K^{*}) must stay hyperbolic: hyperbolicity constraints on α: use results on distance to nearest non-hyperbolic QEP

Higham, Tisseur & Van Dooren '02

< ∃→

easiest case: fix M and K, only change C

All these constraints lead to a maximal range for α

$$-\tau^{-} \leq \alpha \leq \tau^{+}$$

for appropriate thresholds $\tau^-, \tau^+ > 0$.

Algorithm only works if there are no e-values in $(\beta - r, \beta + r)$ either for $\alpha = -\tau^-$ or for $\alpha = \tau^+ \longrightarrow$ provides starting interval for bisection.

The basic isolation algorithm A continuation algorithm

The basic isolation algorithm: Shortcomings

Summarizing: the $O(n^3)$ basic isolation algorithm is

Likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if (M*, C*, K*) sufficiently close to (M, C, K).

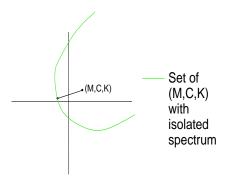
- < ∃ →

The basic isolation algorithm A continuation algorithm

The basic isolation algorithm: Shortcomings

Summarizing: the $O(n^3)$ basic isolation algorithm is

- Likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if (*M*^{*}, *C*^{*}, *K*^{*}) sufficiently close to (*M*, *C*, *K*).
- May not work at all if constraints prevent the algorithm from going all the way to isolation, e.g., positivity constraints:



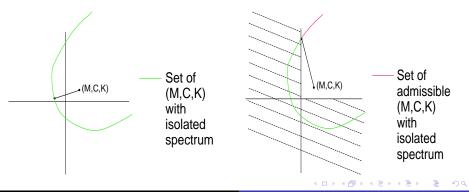
★ ∃ >

The basic isolation algorithm A continuation algorithm

The basic isolation algorithm: Shortcomings

Summarizing: the $O(n^3)$ basic isolation algorithm is

- Likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if (*M*^{*}, *C*^{*}, *K*^{*}) sufficiently close to (*M*, *C*, *K*).
- May not work at all if constraints prevent the algorithm from going all the way to isolation, e.g., positivity constraints:



The basic isolation algorithm A continuation algorithm

The basic isolation algorithm: Shortcomings

Summarizing: the $O(n^3)$ basic isolation algorithm is

- Likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if (M^*, C^*, K^*) sufficiently close to (M, C, K).
- May not work at all if constraints prevent the algorithm from going all the way to isolation, e.g., positivity constraints:

Both difficulties may be overcome

- E - E

A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $(M_0, C_0, K_0) = (M, C, K)$ and updating

$$(M_{i+1}, C_{i+1}, K_{i+1}) = (M_i, C_i, K_i) + h_i w_{\max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step *i*. Graphically,

프 🖌 🛪 프 🛌

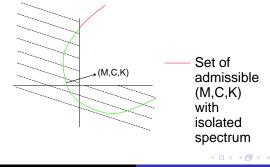
The basic isolation algorithm A continuation algorithm

A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $(M_0, C_0, K_0) = (M, C, K)$ and updating

$$(M_{i+1}, C_{i+1}, K_{i+1}) = (M_i, C_i, K_i) + h_i w_{\max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step *i*. Graphically,



< ∃ >

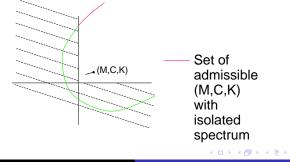
The basic isolation algorithm A continuation algorithm

A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $(M_0, C_0, K_0) = (M, C, K)$ and updating

$$(M_{i+1}, C_{i+1}, K_{i+1}) = (M_i, C_i, K_i) + h_i w_{\max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step *i*. Graphically,



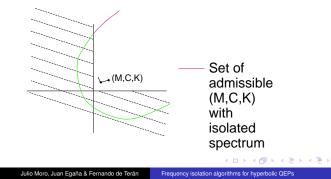
< ∃ >

The basic isolation algorithm A continuation algorithm

A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $(M_0, C_0, K_0) = (M, C, K)$ and updating

$$(M_{i+1}, C_{i+1}, K_{i+1}) = (M_i, C_i, K_i) + h_i w_{\max}^{(i)},$$

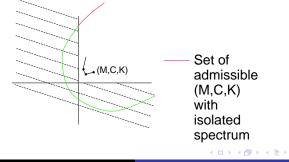


The basic isolation algorithm A continuation algorithm

A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $(M_0, C_0, K_0) = (M, C, K)$ and updating

$$(M_{i+1}, C_{i+1}, K_{i+1}) = (M_i, C_i, K_i) + h_i w_{\max}^{(i)},$$

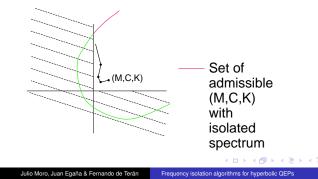


The basic isolation algorithm A continuation algorithm

A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $(M_0, C_0, K_0) = (M, C, K)$ and updating

$$(M_{i+1}, C_{i+1}, K_{i+1}) = (M_i, C_i, K_i) + h_i w_{\max}^{(i)},$$



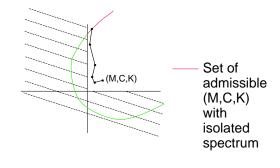
The basic isolation algorithm A continuation algorithm

A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $(M_0, C_0, K_0) = (M, C, K)$ and updating

$$(M_{i+1}, C_{i+1}, K_{i+1}) = (M_i, C_i, K_i) + h_i w_{\max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step *i*. Graphically,



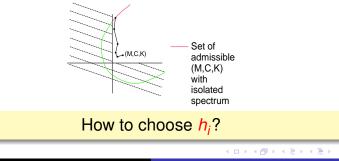
< ∃→

The basic isolation algorithm A continuation algorithm

A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $(M_0, C_0, K_0) = (M, C, K)$ and updating

$$(M_{i+1}, C_{i+1}, K_{i+1}) = (M_i, C_i, K_i) + h_i w_{\max}^{(i)},$$



How to choose h_i ?

$$(M_{i+1}, K_{i+1}) = (M_i, K_i) + h_i w_{\max}^{(i)}, \qquad (M_0, K_0) = (M, K)$$

Several possible choices for h_i . Best performance so far:

Greedy version: Try to isolate at each step. If not possible, then advance as far as possible in the optimal direction and repeat.

< ∃ >

How to choose h_i ?

$$(M_{i+1}, K_{i+1}) = (M_i, K_i) + h_i w_{\max}^{(i)}, \quad (M_0, K_0) = (M, K)$$

Several possible choices for h_i . Best performance so far:

Greedy version: Try to isolate at each step. If not possible, then advance as far as possible in the optimal direction and repeat.

Compute thresholds τ_i^+ , τ_i^- and optimal direction $w_{max}^{(i)}$ at step *i*.

- If possible, compute α_i^* isolating the spectrum, take $h_i = \alpha_i^*$ and stop.
- If not, take h_i equal either to τ_i^+ or $-\tau_i^-$ and continue.

Outline

The frequency isolation problem

2 The algorithms

- The basic isolation algorithm
- A continuation algorithm

- Box vs. basic
- Box vs. continuation

< ≣⇒

Numerical experiments: comparison with EKS

- Both basic and continuation algorithm implemented for tridiagonal undamped case (C = 0) in FORTRAN POWER STATION 4.0 on a PC with IEEE arithmetic
- Generate 1000 random 10×10 QEPs with one single e-value in the resonance band. Radius *r* of resonance band inversely proportional to $\delta < 1$:

the smaller the parameter δ , the smaller the radius *r*

- Compare obtained solutions with solutions provided by 'Box' algorithm by Egaña, Kuhl & Santos '02 (EKS) whenever possible:
 - Box algorithm works only for low dimension (too expensive).
 - Box algorithm works only for uniform distributions of initial e-values.

(四) (日) (日)

э

Numerical experiments: Box vs. basic isolation

Generate 1000 random 10 \times 10 mass-spring systems for each value of $\delta.$ Set

- m_{box}^* , $k_{box}^* \equiv$ solutions computed by the 'Box' algorithm of Egaña, et al.
- m_{β}^*, k_{β}^* : solutions computed by the basic isolation algorithm.

$$Dist_{m,k}^{(\Box)} = \frac{\|(m,k) - (m^*,k^*)_{\Box}\|}{\|(m,k)\|},$$

where \Box is either 'box' or ' β '. Define the quotients

$$Q_{m,k}^{(\beta)} = \frac{\text{Dist}_{m,k}^{(\text{box})}}{\text{Dist}_{m,k}^{(\beta)}}, \qquad \qquad Q_T^{(\beta)} = \frac{\text{CPU time for Box alg.}}{\text{CPU time for basic isolation alg}}$$

and the percentage $p_{m,k}$ of cases with $Q_{m,k}^{(\beta)} < 1$.

Box vs. basic Box vs. continuation

Numerical experiments: Box vs. basic isolation

Generate 1000 random 10 × 10 mass-spring systems for each value of δ .

$$Dist_{m,k}^{(\Box)} = \frac{\|(m,k) - (m^*,k^*)_{\Box}\|}{\|(m,k)\|},$$

where \Box is either 'box' or ' β '. Define the quotients

$$Q_{m,k}^{(\beta)} = \frac{\text{Dist}_{m,k}^{(\text{box})}}{\text{Dist}_{m,k}^{(\beta)}}, \qquad \qquad Q_T^{(\beta)} = \frac{\text{CPU time for Box alg.}}{\text{CPU time for basic isolation alg.}}$$

and the percentage $p_{m,k}$ of cases with $Q_{m,k}^{(\beta)} < 1$.

	$Q_{m,k}^{(\beta)}$			$Q_T^{(\beta)}$		
δ	Average	Min	p _{m,k}	Average	Min	isolated
0.1	0.74	0.09	53.1%	514	61	97.8%
0.15	0.9	0.1	66.4%	420	53	96.9%
0.2	1.31	0.15	82.2%	359	51	89.1%
0.4	2.38	0.39	97.3%	228	48	59.6%

(E) < E) E</p>

Numerical experiments: Box vs. continuation

Generate 1000 random 10 \times 10 mass-spring systems for each value of $\delta.$ Set

- m_{box}^* , $k_{box}^* \equiv$ solutions computed by the 'Box' algorithm of Egaña, et al.
- m_{cont}^* , k_{cont}^* : solutions computed by the continuation algorithm (greedy version).

$$Dist_{m,k}^{(\Box)} = \frac{\|(m,k) - (m^*,k^*)_{\Box}\|}{\|(m,k)\|},$$

where \Box is either 'box' or '*cont*'. Define the quotients

$$Q_{m,k}^{(cont)} = \frac{Dist_{m,k}^{(box)}}{Dist_{m,k}^{(cont)}}, \qquad \qquad Q_T^{(cont)} = \frac{\text{CPU time for Box alg.}}{\text{CPU time for continuation alg.}}$$

and the percentage $p_{m,k}$ of cases with $Q_{m,k}^{(cont)} < 1$.

御とくほとくほとして

Box vs. basic Box vs. continuation

Numerical experiments: Box vs. continuation

Generate 1000 random 10 × 10 mass-spring systems for each value of δ .

$$Dist_{m,k}^{(\Box)} = \frac{\|(m,k) - (m^*,k^*)_{\Box}\|}{\|(m,k)\|},$$

where \Box is either 'box' or '*cont*'. Define the quotients

$$Q_{m,k}^{(cont)} = \frac{Dist_{m,k}^{(box)}}{Dist_{m,k}^{(cont)}}, \qquad \qquad Q_{T}^{(cont)} = \frac{\text{CPU time for Box alg.}}{\text{CPU time for continuation alg.}}$$

and the percentage $p_{m,k}$ of cases with $Q_{m,k}^{(cont)} < 1$.

		$Q_{m,k}^{(cont)}$	$Q_T^{(cont)}$		
δ	Average	Min	p _{m,k}	Average	Min
0.2	0.66	0.04	61.2%	532	67
0.3	0.67	0.009	65.3%	398	65
0.4	0.83	0.016	69.3%	276	50
0.6	1.06	0.04	77.4%	218	36

프 🖌 🛪 프 🛌

New, directional algorithm for the frequency isolation problem proposed for hyperbolic QEPs.

Tested only for tridiagonal undamped case.

- **Basic algorithm**: $O(n^3)$, but isolation guaranteed only for systems close to non-resonance.
- Continuation algorithm:
 - Cost $O(n^3)$ per step.
 - Much faster than 'Box' algorithm.
 - Same quality of approximations as Box alg.
 - More robust: works irrespective of spectral distribution or distance to non-resonance.

★ E → < E → </p>