OF MINNESOTA TWIN CITIES

Solution of large nonlinear eigenvalue problems in Density Functional Theory

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

3rd Berlin-Manchester Workshop on Nonlinear Eigenvalue Problems March 22-23, 2007 ▶ Increasing interest in problems related to condensed matter physics (analyzing properties of matter at the nanoscale).

► Problems lead to enormous computational challenges - excellent source of numerical problems of all types.

► Researchers in this area are among biggest users of highperformance computers

▶ Methods considered: ab-initio Density Functional Theory methods with Pseudopotentials.

Electronic structure and Schrödinger's equation

The many-body Shrödinger equation: $H\Psi = E\Psi$

 \blacktriangleright Hamiltonian H is of the form :

$$egin{aligned} H &= - \sum\limits_i rac{\hbar^2 mathbf{\nabla}_i^2}{2M_i} - \sum\limits_j rac{\hbar^2 mathbf{\nabla}_j^2}{2m} + rac{1}{2} \sum\limits_{i,j} rac{Z_i Z_j e^2}{|ec{R}_i - ec{R}_j|} \ - \sum\limits_{i,j} rac{Z_i e^2}{|ec{R}_i - ec{r}_j|} + rac{1}{2} \sum\limits_{i,j} rac{e^2}{|ec{r}_i - ec{r}_j|} \end{aligned}$$

 $\Psi = \Psi(r_1, r_2, \dots, r_n, R_1, R_2, \dots, R_N)$ depends on coordinates of all electrons/nuclei.

Quick definition of the terms used:

Ab-initio methods - Methods which only use information about atoms that are present in the system

Density Functional Theory: Technique which expresses the original (intractable) problem into one with "charge density" as the main unknown

Pseudo-potential methods: Methods which model the nucleielectrons interactions with a potential that 1) involves only valence electrons, 2) is smooth and nonsingular.

Density Function Theory - Kohn-Sham Eqns.

Result of Density Functional Theory [Hohenberg-Kohn, Kohn-Sham]:

$$\left[-rac{1}{2}
abla^2+V_{tot}[
ho(r),r]
ight]\Psi_k(r)=E_k\Psi_k(r)$$
 .

With

$$V_{tot} = V_{ion} + V_H + V_{xc}$$

- V_H = Hartree potential
- V_{xc} = Exchange & Correlation potential
- V_{ion} = lonic potential
- **Electron Density:**

$$ho(r)={old z}_i^{occup}\,|\Psi_i(r)|^2$$

local local (LDA) Non-local

Kohn-Sham equations \rightarrow nonlinear eigenvalue Pb

$$egin{aligned} & \left[-rac{1}{2}
abla^2 + V_{tot}[r,
ho(r)]
ight] \Psi_i(r) = E_i \Psi_i(r), i = 1,...,i^o \ & V_{tot} = V_H + V_{xc} + V_{ion} \ &
ho(r) = \sum\limits_i^o |\Psi_i(r)|^2 \ &
ho(r) = \sum\limits_i^o |\Psi_i(r)|^2 \ &
abla^2 V_H = -4 \pi
ho(r) \end{aligned}$$

b Both V_{xc} and V_H , depend on ρ .

Potentials & charge densities must be self-consistent. Can be viewed as a nonlinear eigenvalue problem

Broyden-type quasi-Newton 'mixing' technique used

> Typically, a small number of iterations are required

1. SCF + Optimization viewpoint: Minimize energy – To some extent amounts to minimizing trace.. [but Pb is nonlinear] – Car-Parrinello is in this category [simulated anneal.]

2. SCF + diagonalization viewpoint: solve eigenvalue problem at each SCF iteration.

3. Linear scaling methods – determine the density matrix = a projector whose diagonal equals ρ :

$$V = [\psi_1, \cdots, \psi_m] ~
ightarrow ~P = VV^T ~
ightarrow ~
ho = diag(P)$$

Real-space Finite Difference Methods

▶ Use High-Order Finite Difference Methods [Fornberg & Sloan '94]

Typical Geometry = Cube – regular structure.

► Laplacean matrix need not even be stored.

Order 4 Finite Difference Approximation:

8

The physical domain

Pattern of resulting matrix for Ge99H100:

10

%% IN:

%% A= sparse matrix representing the discretization%%of the Laplacean --

%% nev = number of eigenvalues = # of occupied states

%% Domain = struct containing info on the physical domain

- %% Atoms = struct containing info on the atoms
- % tol = tolerance parameter for scf iteration.
- %% maxits = maximum number of SCF iterations allowed.
- %% fid = output file id

_ 11

%% OUT :

%% rho = final charge density found

%% lam = eigenvalues computed - their number may be larger

%% W = set of wave functions.

A nonlinear form of Chebyshev subspace iteration

Given a basis
$$[v_1,\ldots,v_m]$$
, 'filter' each vector as $\hat{v}_i=P_k(A)v_i$

 $\blacktriangleright p_k = Polynomial of low degree: enhances desired eigen$ components

The filtering step is not used to compute eigenvectors accurately >> SCF & diagonization loops merged Important: convergence still good and robust

Main step:

$$\begin{array}{ll} \mathsf{Previous \ basis \ } V = [v_1, v_2, \cdots, v_m] \\ \downarrow \\ \mathsf{Filter} & \hat{V} = [p(A)v_1, p(A)v_2, \cdots, p(A)v_m] \\ \downarrow \\ \mathsf{Orthogonalize \ } [V, R] = qr(\hat{V}, 0) \end{array}$$

 \blacktriangleright The basis V is used to do a Ritz step (basis rotation)

 $C = V^T A \overline{V
ightarrow [U,D]} = eig(\overline{C})
ightarrow \overline{V} := V * \overline{U}$

► Update charge density this basis.

b Update Hamiltonian — repeat

▶ In effect: Nonlinear subspace iteration

Main advantages: (1) very inexpensive, (2) uses minimal storage (m is a little $\geq \#$ states).

Filter polynomials: if [a, b] is interval to dampen, then

$$p_k(t) = C_k(l(t));$$
 with $l(t) = rac{2t-b-a}{b-a}$

+ add scaling

▶ 3-term recurrence of Chebyshev polynommial exploited to compute $p_k(A)v$. If B = l(A), then

$$p_{k+1}(A)v = 2Bp_k(B)v - p_{k-1}(B)v o w_{k+1} = 2Bw_k - w_{k-1}$$

Reference:

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky, Self-Consistent-Field Calculations with Chebyshev Filtered Subspace Iteration, *Minnesota Supercomputer Institute, tech. report.*, *Oct. 2005.*

[See http://www.cs.umn.edu/~saad]

Chebyshev Subspace iteration - experiments

model	size of H	n_{state}	$ n_{symm} $	$n_{H-reduced}$
$Si_{525}H_{276}$	292,584	1194	4	73,146
$Si_{65}Ge_{65}H_{98}$	185,368	313	2	92,684
$Ga_{41}As_{41}H_{72}$	268,096	210	1	268,096
Fe_{27}	697,504	520 imes 2	8	87,188
Fe_{51}	874,976	520 imes 2	8	109,372

Test problems

➤ Tests performed on an SGI Altix 3700 cluster (Minnesota supercomputing Institute). [CPU = a 1.3 GHz Intel Madison processor. Compiler: Intel FORTRAN ifort, with optimization flag -03]

method	# A * x	SCF its.	CPU(secs)
ChebSI	124761	11	5946.69
ARPACK	142047	10	62026.37
TRLan	145909	10	26852.84

 $Si_{525}H_{276}$, Polynomial degree used is 8. Total energies agreed to within 8 digits.

method	# A * x	SCF its.	CPU (secs)
ChebSI	474773	37	37701.54
ARPACK	1272441	34	235662.96
TRLan	1241744	32	184580.33

 Fe_{51} , Polynomial degree used is 9. Total energies same to within ~ 5 digits.

$Si_{6047}H_{1308}$

n_{state}	# A * x	# SCF	$rac{total_eV}{atom}$	1st CPU	total CPU
12751	2682749	14	-91.34809	45.11 h.	101.02 h.

PEs = 32. n_H =2,144,432. m = 17 for Chebyshev-Davidson; m = 8 for CheFSI.

$Si_{9041}H_{1860}$ n_{state} # A * x# SCF $\frac{total_eV}{atom}$ 1st CPUtotal CPU19015480448818-92.00412102.12 h.294.36 hrs

PEs = 48; n_H =2,992,832. m = 17 for Chebyshev-Davidson; m = 8 for CheFSI.

____21

► Very important to consider problem from the angle of 'subspaces' rather than individual eigenvectors.

► Also important: SCF loop. A 'sub-optimal' linear algorithm becomes a star in nonlinear context!

► Next big step: completely avoid diagonalization ['linear scaling' methods w. density matrix formalism]

► Use better filtering polynomials? Can exploit orthogonal polynomials. see [YS, 2005]

▶ It is possible to find good polynomials for spectrum slicing [computing eigenspaces by parts, independently]. Issue: implementation.

URL: http://www.cs.umn.edu/~saad

• My e-mail address:

e-mail: saad@cs.umn.edu

• PARSEC's site:

http://www.ices.utexas.edu/parsec/index.html

THANK YOU FOR YOUR ATTENTION!

