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Preliminary remarks

» Increasing interest in problems related to condensed matter
physics (analyzing properties of matter at the nanoscale).

» Problems lead to enormous computational challenges - ex-
cellent source of numerical problems of all types.

» Researchers in this area are among biggest users of high-
performance computers

»w Methods considered: ab-initio Density Functional Theory
methods with Pseudopotentials.
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FElectronic structure and Schrodinger’s equation

» The many-body Shrodinger equation:

HY = EV

w Hamiltonian H is of the form :

Y ==

w» U = U(ry,re,...,r,, R, Ra,..., Rn) depends on coor-
dinates of all electrons/nuclei.
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Quick definition of the terms used: |

methods - Methods which only use information about
atoms that are present in the system

Density Functional Theory: JREoTsI{e[VI=RWV ¢ TTols R0 ISR [ No T gfo 2

inal (intractable) problem into one with “charge density” as
the main unknown

Pseudo-potential methods: Y8 TeYe SR o 1Tel (W11 ToYe [ A L[Vl [T R

electrons interactions with a potential that 1) involves only
valence electrons, 2) is smooth and nonsingular.

Manchester 03/23/07 4]



Density Function Theory - Kohn-Sham FEgns.

» Result of Density Functional Theory [Hohenberg-Kohn,
Kohn-Sham]:

—3 V2 + Vig[p(r), ]| Oi(r) = Ep¥y(r)

With
Wot — ‘/;Zon + Vi + Vmc
Va = Hartree potential local
Vze = Exchange & Correlation potential local (LDA)
Vionn. = lonic potential Non-local

» Electron Density:
p(r) == [¥i(r)|?

Manchester 03/23/07 5]



Kohn-Sham equations — nonlinear etgenvalue Pb

1
=, V24 Viarlrs p(n)] Wi(r) = Ei®y(r),i = 1,...,1°

‘/;tot — VH + Vwc + ‘/jion
p(r) = £ |%i(r)|?
V*Vyg = —4nmp(r)

»w Both V. and Vg, depend on p.

» Potentials & charge densities must be self-consistent. Can

be viewed as a nonlinear eigenvalue problem
» Broyden-type quasi-Newton 'mixing’ technique used

» Typically, a small number of iterations are required
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Solution methods used

SCF 4+ Optimization viewpoint: Minimize energy — To
some extent amounts to minimizing trace.. [but Pb is nonlin-
ear] — Car-Parrinello is in this category [simulated anneal.]

SCF + diagonalization viewpoint: solve eigenvalue problem
at each SCF iteration.

Linear scaling methods — determine the density matrix =
a projector whose diagonal equals p :

V=[¢1,°“,¢m] — P=VV"'’ — p:diag(P)
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Real-space Finite Difference Methods

» Use High-Order Finite Difference Methods [Fornberg &
Sloan '94]

» Typical Geometry = Cube — regular structure.

» Laplacean matrix need not even be stored.

Order 4 Finite Differ-

ence Approximation:
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The physical domain
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Pattern of resulting matrix for Ge99H100:

dimension = 112985, density = 0.066204%
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Matlab version - RSDFT

function [rho, lam, W] = rsdft(A, nev, Domain, Atoms,

Toto
Tols
Toto
Toto
Toto
Toto
Tols
Toto
Tols

IN:
A

nev
Domain
Atoms
tol
maxits
fid

tol, maxits, fid)

sparse matrix representing the discretization
of the Laplacean --

number of eigenvalues = # of occupied states
struct containing info on the physical domain
struct containing info on the atoms

tolerance parameter for scf iteration.
maximum number of SCF iterations allowed.

output file id
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%% OUT

%/ ThO = final charge density found

hodo lam = elgenvalues computed - thelr number may be larger
ol W = set of wave functions.
%%:::========================================================
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A nonlinear form of Chebyshev subspace iteration

Given a basis [vy,...,v,,], filter’ each vector as

» pr. = Polynomial of low degree: enhances desired eigen-

components

The filtering step is not used
Deg. 6 Cheb. polynom., damped interv=[0.2, 2]

to compute eigenvectors ac-

curately »

SCF & diagonization loops

merged

Important: convergence still

good and robust



Main step:

Previous basis V = [v,vg, ¢, U]

l

Filter V = [p(A)vi, p(A)vs, - -+, p(A) V]

l
Orthogonalize [V, R] = gqr(V,0)

» The basis V is used to do a Ritz step (basis rotation)
C=V%'AV = [U,D] =eig(C) -V :=V U

» Update charge density this basis.

»w Update Hamiltonian — repeat
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» In effect: Nonlinear subspace iteration

» Main advantages: (1) very inexpensive, (2) uses minimal
storage (m is a little > # states).

» Filter polynomials: if [a, b] is interval to dampen, then

t—b—a

pr(t) = Cr(I();  with 1(t) =

+ add scaling

» 3-term recurrence of Chebyshev polynommial exploited to
compute pig(A)v. If B =1(A), then

Pri1(A)v = 2Bpi(B)v —p_1(B)v — Wi, = 2Bwg, — wg_4
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Select initial V = V;

Get initial basis {v;} (diag)

Find new V.. = f[p(r)]

Vnew — ‘/;lon + VH S5 Vazc -1 ‘MiXing’

If |View — V| < tol stop

l
Filter basis {v;} (with H,,.,)-+torth.




Reference:

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky,
Self-Consistent-Field Calculations with Chebyshev Filtered Sub-

space lteration, Minnesota Supercomputer Institute, tech. report.,
Oct. 2005.

[See http://www.cs.umn.edu/~saad]
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Chebyshev Subspace iteration - experiments

model size of H | nNgate | Msymm M H—reduced
St505Ho76 292,584 1194 i} 73,146
Ste5GegsHgs | 185,368 313 2 92,684
Gas1Asy1Hy7o 268,006 210 | 268,096
Fesr 697,504 520 x 2 8 87,188
Fes 874,976 520 x 2| 8 109,372

Test problems

» Tests performed on an SGI Altix 3700 cluster (Minnesota
supercomputing Institute). [CPU = a 1.3 GHz Intel Madison
processor. Compiler: Intel FORTRAN ifort, with optimiza-
tion flag -03 ]
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method |# A % x SCF its. CPU(secs)
ChebSI | 124761 11 5946.69
ARPACK 142047 10 62026.37
TRLan 145909 10 26852.84

S1595H576, Polynomial degree used is 8. Total energies agreed
to within 8 digits.
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method | # A % x SCF its. CPU (secs)
ChebSI | 474773 37 37701.54
ARPACK 1272441 34 235662.96
TRLan 1241744 32 184580.33

Fes:, Polynomial degree used is 9. Total energies same to

within ~ 5 digits.
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Some recent results - with *Large* St clusters

Nstate # A x x| SCF| te-cV 115t CPU total CPU
12751 2682749 14 -91.34809 45.11 h.| 101.02 h.
# PEs = 32. ny =2,144,432. m = 17 for Chebyshev-
Davidson; m = 8 for CheFSI.
Nstate # A x x| SCF| tele-cV | 15t CPU total CPU
19015 4804488 18 |-92.00412 102.12 h. 294.36 hrs
# PEs = 48; nyg =2,992,832. m = 17 for Chebyshev-

Davidson; m = 8 for CheFSI.
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Summary & Conlusion

» Very important to consider problem from the angle of
'subspaces’ rather than individual eigenvectors.

» Also important: SCF loop. A ’sub-optimal’ linear algorithm
becomes a star in nonlinear context!

» Next big step: completely avoid diagonalization [’linear
scaling’ methods w. density matrix formalism]
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» Use better filtering poly-
nomials? Can exploit or-

thogonal polynomials. see
[YS, 2005]

» It is possible to find
good polynomials (0]
[computing
eigenspaces by parts,
independently]. Issue:
implementation.

2oly. filter; Intervals: [0 0.3];[0.3 1.3927];[1.3927 7.957]; deg =

FAWAYEE VAWAWAWAWAWAWAWY YT
v M\ N\ \J \J \J\JNJVVIVN
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My URL:

URL: http://www.cs.umn.edu/~saad

My e-mail address:

e-mail: saad@cs.umn.edu

PARSEC's site:

http://www.ices.utexas.edu/parsec/index.html

THANK YOU FOR YOUR ATTENTION!

Manchester 03/23/07 | 24



