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Preliminary remarks

II Increasing interest in problems related to condensed matter

physics (analyzing properties of matter at the nanoscale).

II Problems lead to enormous computational challenges - ex-

cellent source of numerical problems of all types.

II Researchers in this area are among biggest users of high-

performance computers

II Methods considered: ab-initio Density Functional Theory

methods with Pseudopotentials.

Manchester 03/23/07 2



Electronic structure and Schrödinger’s equation

II The many-body Shrödinger equation:

HΨ = EΨ

II Hamiltonian H is of the form :
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II Ψ = Ψ(r1, r2, . . . , rn, R1, R2, . . . , RN) depends on coor-

dinates of all electrons/nuclei.
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Quick definition of the terms used:

Ab-initio methods - Methods which only use information about

atoms that are present in the system

Density Functional Theory: Technique which expresses the orig-

inal (intractable) problem into one with “charge density” as

the main unknown

Pseudo-potential methods: Methods which model the nuclei-

electrons interactions with a potential that 1) involves only

valence electrons, 2) is smooth and nonsingular.
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Density Function Theory - Kohn-Sham Eqns.

II Result of Density Functional Theory [Hohenberg-Kohn,

Kohn-Sham]:[
−1

2
∇2 + Vtot[ρ(r), r]

]
Ψk(r) = EkΨk(r)

With

Vtot = Vion + VH + Vxc

• VH = Hartree potential local

• Vxc = Exchange & Correlation potential local (LDA)

• Vion = Ionic potential Non-local

II Electron Density:

ρ(r) = ∑occup
i |Ψi(r)|2
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Kohn-Sham equations → nonlinear eigenvalue Pb

−
1

2
∇2 + Vtot[r, ρ(r)]

 Ψi(r) = EiΨi(r), i = 1, ..., io

Vtot = VH + Vxc + Vion

ρ(r) =
o∑
i
|Ψi(r)|2

∇2VH = −4πρ(r)

II Both Vxc and VH, depend on ρ.

II Potentials & charge densities must be self-consistent. Can

be viewed as a nonlinear eigenvalue problem

II Broyden-type quasi-Newton ’mixing’ technique used

II Typically, a small number of iterations are required
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Solution methods used

1. SCF + Optimization viewpoint: Minimize energy – To

some extent amounts to minimizing trace.. [but Pb is nonlin-

ear] – Car-Parrinello is in this category [simulated anneal.]

2. SCF + diagonalization viewpoint: solve eigenvalue problem

at each SCF iteration.

3. Linear scaling methods – determine the density matrix =

a projector whose diagonal equals ρ :

V = [ψ1, · · · , ψm] → P = V V T → ρ = diag(P )
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Real-space Finite Difference Methods

II Use High-Order Finite Difference Methods [Fornberg &

Sloan ’94]

II Typical Geometry = Cube – regular structure.

II Laplacean matrix need not even be stored.

Order 4 Finite Differ-

ence Approximation:

x

yz
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The physical domain
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Pattern of resulting matrix for Ge99H100:
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Matlab version - RSDFT

function [rho, lam, W] = rsdft(A, nev, Domain, Atoms,

tol, maxits, fid)

%% IN:

%% A = sparse matrix representing the discretization

%% of the Laplacean --

%% nev = number of eigenvalues = # of occupied states

%% Domain = struct containing info on the physical domain

%% Atoms = struct containing info on the atoms

%% tol = tolerance parameter for scf iteration.

%% maxits = maximum number of SCF iterations allowed.

%% fid = output file id
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%% OUT :

%% rho = final charge density found

%% lam = eigenvalues computed - their number may be larger than nev

%% W = set of wave functions.

%%============================================================
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A nonlinear form of Chebyshev subspace iteration

Given a basis [v1, . . . , vm], ’filter’ each vector as

v̂i = Pk(A)vi

II pk = Polynomial of low degree: enhances desired eigen-

components

The filtering step is not used

to compute eigenvectors ac-

curately II

SCF & diagonization loops

merged

Important: convergence still
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Main step:

Previous basis V = [v1, v2, · · · , vm]

↓
Filter V̂ = [p(A)v1, p(A)v2, · · · , p(A)vm]

↓
Orthogonalize [V,R] = qr(V̂ , 0)

II The basis V is used to do a Ritz step (basis rotation)

C = V TAV → [U,D] = eig(C) → V := V ∗ U

II Update charge density this basis.

II Update Hamiltonian — repeat
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II In effect: Nonlinear subspace iteration

II Main advantages: (1) very inexpensive, (2) uses minimal

storage (m is a little ≥ # states).

II Filter polynomials: if [a, b] is interval to dampen, then

pk(t) = Ck(l(t)); with l(t) =
2t− b− a

b− a

+ add scaling

II 3-term recurrence of Chebyshev polynommial exploited to

compute pk(A)v. If B = l(A), then

pk+1(A)v = 2Bpk(B)v−pk−1(B)v → wk+1 = 2Bwk−wk−1
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Select initial V = Vat

Get initial basis {ψi} (diag)

Calculate new ρ(r) = ∑occ
i |ψi|2

Find new VH: −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

Filter basis {ψi} (with Hnew)+orth.

V = Vnew
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Reference:

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky,

Self-Consistent-Field Calculations with Chebyshev Filtered Sub-

space Iteration, Minnesota Supercomputer Institute, tech. report.,

Oct. 2005.

[See http://www.cs.umn.edu/∼saad]
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Chebyshev Subspace iteration - experiments

model size of H nstate nsymm nH−reduced

Si525H276 292,584 1194 4 73,146

Si65Ge65H98 185,368 313 2 92,684

Ga41As41H72 268,096 210 1 268,096

Fe27 697,504 520 × 2 8 87,188

Fe51 874,976 520 × 2 8 109,372

Test problems

II Tests performed on an SGI Altix 3700 cluster (Minnesota

supercomputing Institute). [CPU = a 1.3 GHz Intel Madison

processor. Compiler: Intel FORTRAN ifort, with optimiza-

tion flag -O3 ]
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method # A ∗ x SCF its. CPU(secs)

ChebSI 124761 11 5946.69

ARPACK 142047 10 62026.37

TRLan 145909 10 26852.84

Si525H276, Polynomial degree used is 8. Total energies agreed

to within 8 digits.
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method # A ∗ x SCF its. CPU (secs)

ChebSI 474773 37 37701.54

ARPACK 1272441 34 235662.96

TRLan 1241744 32 184580.33

Fe51, Polynomial degree used is 9. Total energies same to

within ∼ 5 digits.
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Some recent results - with *Large* Si clusters

Si6047H1308

nstate # A ∗ x # SCF total eV
atom

1st CPU total CPU

12751 2682749 14 -91.34809 45.11 h. 101.02 h.

# PEs = 32. nH =2,144,432. m = 17 for Chebyshev-

Davidson; m = 8 for CheFSI.

Si9041H1860

nstate # A ∗ x # SCF total eV
atom

1st CPU total CPU

19015 4804488 18 -92.00412 102.12 h. 294.36 hrs

# PEs = 48; nH =2,992,832. m = 17 for Chebyshev-

Davidson; m = 8 for CheFSI.
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Summary & Conlusion

II Very important to consider problem from the angle of

’subspaces’ rather than individual eigenvectors.

II Also important: SCF loop. A ’sub-optimal’ linear algorithm

becomes a star in nonlinear context!

II Next big step: completely avoid diagonalization [’linear

scaling’ methods w. density matrix formalism]
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II Use better filtering poly-

nomials? Can exploit or-

thogonal polynomials. see

[YS, 2005]
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II It is possible to find

good polynomials for

spectrum slicing [computing

eigenspaces by parts,

independently]. Issue:

implementation.
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• My URL:

URL: http://www.cs.umn.edu/∼saad

• My e-mail address:

e-mail: saad@cs.umn.edu

• PARSEC’s site:

http://www.ices.utexas.edu/parsec/index.html

THANK YOU FOR YOUR ATTENTION!
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