UNIVERSITY of Minnesota twinctities

Solution of large nonlinear eigenvalue problems in Density Functional Theory

Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

3rd Berlin-Manchester Workshop on Nonlinear Eigenvalue Problems
March 22-23, 2007
n Increasing interest in problems related to condensed matter physics (analyzing properties of matter at the nanoscale).

- Problems lead to enormous computational challenges - excellent source of numerical problems of all types.

D Researchers in this area are among biggest users of highperformance computers

D Methods considered: ab-initio Density Functional Theory methods with Pseudopotentials.

The many-body Shrödinger equation:

$$
H \Psi=E \Psi
$$

D Hamiltonian H is of the form :

$$
\begin{aligned}
H= & -\sum_{i} \frac{\hbar^{2} \nabla_{i}^{2}}{2 M_{i}}-\sum_{j} \frac{\hbar^{2} \nabla_{j}^{2}}{2 m}+\frac{1}{2} \sum_{i, j} \frac{Z_{i} Z_{j} e^{2}}{\left|\vec{R}_{i}-\vec{R}_{j}\right|} \\
& -\sum_{i, j} \frac{Z_{i} e^{2}}{\left|\vec{R}_{i}-\vec{r}_{j}\right|}+\frac{1}{2} \sum_{i, j} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
\end{aligned}
$$

$\boxtimes \Psi=\Psi\left(r_{1}, r_{2}, \ldots, r_{n}, R_{1}, R_{2}, \ldots, R_{N}\right)$ depends on coordinates of all electrons/nuclei.

Quick definition of the terms used:

Ab-initio methods - Methods which only use information about atoms that are present in the system

Density Functional Theory: Technique which expresses the original (intractable) problem into one with "charge density" as the main unknown

Pseudo-potential methods: Methods which model the nucleielectrons interactions with a potential that 1) involves only valence electrons, 2) is smooth and nonsingular.

Density Function Theory - Kohn-Sham Eqns.

D Result of Density Functional Theory [Hohenberg-Kohn, Kohn-Sham]:

$$
\left[-\frac{1}{2} \nabla^{2}+V_{t o t}[\rho(r), r]\right] \Psi_{k}(r)=E_{k} \Psi_{k}(r)
$$

With

$$
V_{t o t}=V_{i o n}+V_{H}+V_{x c}
$$

- $V_{H}=$ Hartree potential
local
- $V_{x c}=$ Exchange \& Correlation potential
- $V_{i o n}=$ Ionic potential

Non-local
\rightarrow Electron Density:

$$
\rho(r)=\Sigma_{i}^{o c c u p}\left|\Psi_{i}(r)\right|^{2}
$$

$$
\begin{aligned}
{\left[-\frac{1}{2} \nabla^{2}+V_{t o t}[r, \rho(r)]\right] \Psi_{i}(r) } & =E_{i} \Psi_{i}(r), i=1, \ldots, i^{o} \\
V_{t o t} & =V_{H}+V_{x c}+V_{i o n} \\
\rho(r) & =\sum_{i}^{o}\left|\Psi_{i}(r)\right|^{2} \\
\nabla^{2} V_{H} & =-4 \pi \rho(r)
\end{aligned}
$$

\rightarrow Both $V_{x c}$ and V_{H}, depend on ρ.

- Potentials \& charge densities must be self-consistent. Can be viewed as a nonlinear eigenvalue problem

D Broyden-type quasi-Newton 'mixing' technique used

- Typically, a small number of iterations are required

Solution methods used

1. SCF + Optimization viewpoint: Minimize energy - To some extent amounts to minimizing trace.. [but Pb is nonlinear] - Car-Parrinello is in this category [simulated anneal.]
2. SCF + diagonalization viewpoint: solve eigenvalue problem at each SCF iteration.
3. Linear scaling methods - determine the density matrix $=$ a projector whose diagonal equals ρ :

$$
V=\left[\psi_{1}, \cdots, \psi_{m}\right] \rightarrow P=V V^{T} \rightarrow \rho=\operatorname{diag}(P)
$$

\# Use High-Order Finite Difference Methods [Fornberg \& Sloan '94]
n Typical Geometry = Cube - regular structure.
D Laplacean matrix need not even be stored.

Order 4 Finite Difference Approximation:

The physical domain

Pattern of resulting matrix for Ge99H100:

Matlab version - RSDFT

function [rho, lam, W] = rsdft(A, nev, Domain, Atoms, tol, maxits, fid)
\% \% IN:
$\%$ A $\quad=$ sparse matrix representing the discretization
\%\% of the Laplacean --
$\% \%$ nev $=$ number of eigenvalues = \# of occupied states
$\% \%$ Domain $=$ struct containing info on the physical domain
$\% \%$ Atoms $=$ struct containing info on the atoms
$\% \%$ tol $=$ tolerance parameter for scf iteration.
$\% \%$ maxits $=$ maximum number of SCF iterations allowed.
\%\% fid = output file id

```
%% OUT :
%% rho = final charge density found
%% lam = eigenvalues computed - their number may be larger
%% W = set of wave functions.
%%================================================================
```

Given a basis $\left[v_{1}, \ldots, v_{m}\right]$, 'filter' each vector as

$$
\hat{v}_{i}=P_{k}(A) v_{i}
$$

m $p_{k}=$ Polynomial of low degree: enhances desired eigencomponents
The filtering step is not used to compute eigenvectors accurately
SCF \& diagonization loops merged
Important: convergence still good and robust

Main step:

$$
\begin{array}{ll}
\text { Previous basis } & V=\left[v_{1}, v_{2}, \cdots, v_{m}\right] \\
& \downarrow \\
\text { Filter } & \hat{V}=\left[p(A) v_{1}, p(A) v_{2}, \cdots, p(A) v_{m}\right] \\
& \downarrow
\end{array}
$$

Orthogonalize $[V, R]=\operatorname{qr}(\hat{V}, 0)$
The basis V is used to do a Ritz step (basis rotation)

$$
C=V^{T} A V \rightarrow[U, D]=\operatorname{eig}(C) \rightarrow V:=V * U
$$

- Update charge density this basis.
\# Update Hamiltonian - repeat

D In effect: Nonlinear subspace iteration
M Main advantages: (1) very inexpensive, (2) uses minimal storage (m is a little \geq \# states).

- Filter polynomials: if $[a, b]$ is interval to dampen, then

$$
p_{k}(t)=C_{k}(l(t)) ; \quad \text { with } \quad l(t)=\frac{2 t-b-a}{b-a}
$$

+ add scaling
D 3-term recurrence of Chebyshev polynommial exploited to compute $p_{k}(\boldsymbol{A}) v$. If $B=l(\boldsymbol{A})$, then

$$
p_{k+1}(A) v=2 B p_{k}(B) v-p_{k-1}(B) v \rightarrow w_{k+1}=2 B w_{k}-w_{k-1}
$$

Select initial $V=V_{a t}$

Get initial basis $\left\{\psi_{i}\right\}$ (diag)

Calculate new $\rho(r)=\Sigma_{i}^{o c c}\left|\psi_{i}\right|^{2}$

Find new $V_{H}:-\nabla^{2} V_{H}=4 \pi \rho(r)$
Find new $V_{x c}=f[\rho(r)]$
$V=V_{\text {new }}$
$V_{\text {new }}=V_{i o n}+V_{H}+V_{x c}+$ 'Mixing'
If $\left|V_{\text {new }}-V\right|<$ tol stop

Filter basis $\left\{\psi_{i}\right\}$ (with $H_{\text {new }}$)+orth.

Reference:

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky, Self-Consistent-Field Calculations with Chebyshev Filtered Subspace Iteration, Minnesota Supercomputer Institute, tech. report., Oct. 2005.
[See http://www.cs.umn.edu/~saad]

Chebyshev Subspace iteration - experiments

model	size of H	$n_{\text {state }}$	$n_{\text {symm }}$	$n_{H-\text { reduced }}$
$S i_{525} H_{276}$	292,584	1194	4	73,146
$S i_{65} G e_{65} H_{98}$	185,368	313	2	92,684
$G a_{41} A s_{41} H_{72}$	268,096	210	1	268,096
$F e_{27}$	697,504	520×2	8	87,188
$F e_{51}$	874,976	520×2	8	109,372

Test problems

D Tests performed on an SGI Altix 3700 cluster (Minnesota supercomputing Institute). [CPU = a 1.3 GHz Intel Madison processor. Compiler: Intel FORTRAN ifort, with optimization flag -03]

method	$\# A * x$	SCF its.	CPU(secs)
ChebSI	124761	11	5946.69
ARPACK	142047	10	62026.37
TRLan	145909	10	26852.84

$S i_{525} H_{276}$, Polynomial degree used is 8. Total energies agreed to within 8 digits.

method	$\# A * x$	SCF its.	CPU (secs)
ChebSI	474773	37	37701.54
ARPACK	1272441	34	235662.96
TRLan	1241744	32	184580.33

$F e_{51}$, Polynomial degree used is 9 . Total energies same to within ~ 5 digits.
$\mathrm{Si}_{6047} \mathrm{H}_{1308}$

$n_{\text {state }}$	$\# A * x$	$\#$ SCF	total_eV atom	1st CPU	total CPU
12751	2682749	14	-91.34809	45.11 h.	101.02 h.

\# PEs $=$ 32. $n_{H}=2,144,432 . \quad m=17$ for ChebyshevDavidson; $m=8$ for CheFSI.

$S i_{9041} H_{1860}$

$n_{\text {state }}$	$\# A * x$	\# SCF	$\underset{\text { total eV }}{\text { atom }}$	1st CPU	total CPU
19015	4804488	18	-92.00412	102.12 h.	294.36 hrs

\# PEs $=48 ; n_{H}=2,992,832$. $m=17$ for ChebyshevDavidson; $m=8$ for CheFSI.

Summary \mathcal{E}^{3} Conlusion

D Very important to consider problem from the angle of 'subspaces' rather than individual eigenvectors.

- Also important: SCF loop. A 'sub-optimal' linear algorithm becomes a star in nonlinear context!

D Next big step: completely avoid diagonalization ['linear scaling' methods w. density matrix formalism]

- Use better filtering polynomials? Can exploit orthogonal polynomials. see [YS, 2005]

- It is possible to find good polynomials for spectrum slicing [computing eigenspaces by parts, independently]. Issue: implementation.

My URL:

URL: http://www.cs.umn.edu/~saad

My e-mail address:

> e-mail: saad@cs.umn.edu

PARSEC's site:
http://www.ices.utexas.edu/parsec/index.html

THANK YOU FOR YOUR ATTENTION!

