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Regularized total least squres problems

Total Least Squares Problem

The ordinary Least Squares (LS) method assumes that the system
matrix A of a linear model is error free, and all errors are confined to
the right hand side b. In practical applications it may happen that all
data are contaminated by noise.

If the true values of the observed variables satisfy linear relations, and
if the errors in the observations are independent random variables with
zero mean and equal variance, then the total least squares (TLS)
approach often gives better estimates than LS.

Given A ∈ Rm×n, b ∈ Rm, m ≥ n

Find Ã ∈ Rm×n, b̃ ∈ Rm and x ∈ Rn such that

‖(A, b)− (Ã, b̃)‖2F = min! subject to Ãx = b̃,

where ‖ · ‖F denotes the Frobenius norm.
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Regularized total least squres problems

Regularized Total Least Squares Problem

If A and (A, b) are ill-conditioned, regularization is necessary.

Let L ∈ Rk×n, k ≤ n and δ > 0. Then the quadratically constrained
formulation of the Regularized Total Least Squares (RTLS) problems
reads:
Find Ã ∈ Rm×n, b̃ ∈ Rm and x ∈ Rn such that

‖(A, b)− (Ã, b̃)‖2F = min! subject to Ãx = b̃, ‖Lx‖22 ≤ δ2.

Using the orthogonal distance this problems can be rewritten as
(cf. Golub, Van Loan 1980)
Find x ∈ Rn such that

‖Ax − b‖22
1 + ‖x‖22

= min! subject to ‖Lx‖22 ≤ δ2.
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Regularized total least squres problems

Regularized Total Least Squares Problem ct.

If δ > 0 is chosen small enough (e.g. δ < ‖LxTLS‖ where xTLS is the
solution of the TLS problem), then the constraint ‖Lx‖22 ≤ δ2 is active,
and the RTLS problem reads
Find x ∈ Rn such that

‖Ax − b‖22
1 + ‖x‖22

= min! subject to ‖Lx‖22 = δ2.

The first order optimality conditions are

B(x)x + λLT Lx = d(x), ‖Lx‖22 = δ2

where

B(x) =
1

1 + ‖x‖22

(
AT A− f (x)In

)
, f (x) =

‖Ax − b‖22
1 + ‖x‖22

, d(x) =
AT b

1 + ‖x‖22
.
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Regularized total least squres problems

Algorithm RTLSQEP: Sima, Van Huffel & Golub 2004

Initialization Let x0 be a starting vector. Compute B0 := B(x0) and
d0 = d(x0). Set j = 0

step j Find x j+1 and λj+1 which solves

Bjx + λLT Lx = dj , ‖Lx‖22 = δ2

corresponding to the maximal λ

Compute Bj+1 = B(x j+1) and dj+1 = d(x j+1)

stopping criterion if

‖Bj+1x j+1 + λj+1LT Lx j+1 − dj+1‖2 < ε

then STOP; else j ← j + 1 and go to step j .
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Regularized total least squres problems

A quadratic eigenproblem

Sima, van Huffel, Golub (2004)
The first order conditions can be solved via the maximal positive
eigenvalue and corresponding eigenvector of a quadratic eigenproblem(

(W + λI)2 − δ−2hhT )
u = 0 (QEP)

where W ∈ Rk×k is symmetric, and h ∈ Rk .

The quadratically constrained least squares problem

‖Ax − b‖2 = min! subject to ‖x‖22 = δ2

can be solved by via one quadratic eigenproblem (QEP) where

W = AT A and h = AT b.

This approach was introduced by Gander, Golub, von Matt (1989)
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Regularized total least squres problems

Nonlinear maxmin characterization

Let T (λ) ∈ Cn×n, T (λ) = T (λ)H , λ ∈ J ⊂ R an open interval (maybe
unbounded).

For every fixed x ∈ Cn, x 6= 0 assume that the real function

f (·; x) : J → R, f (λ; x) := xHT (λ)x

is continuously differentiable, and that the real equation

f (λ, x) = 0

has at most one solution λ =: p(x) in J.

Then equation f (λ, x) = 0 implicitly defines a functional p on some
subset D of Cn which we call the Rayleigh functional.

Assume that
∂

∂λ
f (λ; x)

∣∣
λ=p(x) > 0 for every x ∈ D.
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Regularized total least squres problems

maxmin characterization (V., Werner 1982)

Let supv∈D p(v) ∈ J and assume that there exists a subspace W ⊂ Cn

of dimension ` such that

W ∩ D 6= ∅ and inf
v∈W∩D

p(v) ∈ J.

Then T (λ)x = 0 has at least ` eigenvalues in J, and for
j = 1, . . . , ` the j-largest eigenvalue λj can be characterized by

λj = max
dim V=j,
V∩D 6=∅

inf
v∈V∩D

p(v). (1)

For j = 1, . . . , ` every j dimensional subspace V ⊂ Cn with

V ∩ D 6= ∅ and λj = inf
v∈V∩D

p(v)

is contained in D ∪ {0}, and the maxmin characterization of λj can
be replaced by

λj = max
dim V=j,

V\{0}⊂D

min
v∈V\{0}

p(v).
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maximum real solution of a quadratic eigenproblem

Back to

T (λ)x :=
(
(W + λI)2 − δ−2hhT )

x = 0 (QEP)

f (λ, x) = xHT (λ)x = λ2‖x‖22 + 2λxHWx + ‖Wx‖22 − |xHh|2/δ2, x 6= 0

is a parabola which attains its minimum at

λ = −xHWx
xHx

.

Let J = (−λmin,∞) where λmin is the minimum eigenvalue of W . Then
f (λ, x) = 0 has at most one solution p(x) ∈ J for every x 6= 0. Hence,
the Rayleigh functional p of (QEP) corresponding to J is defined, and
the general conditions are satisfied.
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maximum real solution of a quadratic eigenproblem

Characterization of maximal real eigenvalue

Let xmin be an eigenvector of W corresponding to λmin. Then

f (−λmin, xmin) = xH
min(W − λmin)

2xmin − |xH
minh|2/δ2 = −|xH

minh|2/δ2 ≤ 0

Hence, if xH
minh 6= 0 then xmin ∈ D.

If xH
minh = 0, and the minimum eigenvalue µmin of T (−λmin) is negative,

then for the corresponding eigenvector ymin it holds

f (−λmin, ymin) = yH
minT (−λmin)ymin = µmin‖ymin‖22 < 0,

and ymin ∈ D.

If xH
minh = 0, and T (−λmin) is positive semi-definite, then

f (−λmin, x) = xHT (−λmin)x ≥ 0 for every x 6= 0,

and D = ∅.
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maximum real solution of a quadratic eigenproblem

Characterization of maximal real eigenvalue ct.

Assume that D 6= ∅. For xHh = 0 it holds that

f (λ, x) = ‖(W + λI)x‖22 > 0 for every λ ∈ J,

i.e. x 6∈ D.

Hence, D does not contain a two-dimensional subspace of Rn, and
therefore J contains at most one eigenvalue of (QEP).

If λ ∈ C is a non-real eigenvalue of (QEP) and x a corresponding
eigenvector, then

xHT (λ)x = λ2‖x‖22 + 2λxHWx + ‖Wx‖22 − |xHh|2/δ2 = 0.

Hence, the real part of λ satisfies

real(λ) = −xHWx
xHx

≤ −λmin.
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maximum real solution of a quadratic eigenproblem

Theorem 1

Let λmin be the minimal eigenvalue of W , and xmin be a corresponding
eigenvector.

If xH
minh = 0 and T (−λmin) is positive semi-definite, then

λ̂ := −λmin is the maximal real eigenvalue of (QEP).

Otherwise, the maximal real eigenvalue is the unique eigenvalue λ̂
of (QEP) in J = (−λmin,∞), and it holds

λ̂ = max
x∈D

p(x).

λ̂ is the right most eigenvalue of (QEP), i.e.

real(λ) ≤ −λmin ≤ λ̂ for every eigenvalue λ 6= λ̂ of (QEP).
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maximum real solution of a quadratic eigenproblem

Positivity of λ̂

Simplest counter–example: If W is positive definite with eigenvalue
λj > 0, then −λj are the only eigenvalues of the quadratic
eigenproblem (W + λI)2x = 0, and if the term δ−2hhT is small enough,
then the quadratic problem will have no positive eigenvalue, but the
right–most eigenvalue will be negative.

However, in quadratic eigenproblems occurring in regularized total
least squares problems δ and h are not arbitrary, but regularization
only makes sense if δ ≤ ‖LxTLS‖ where xTLS denotes the solution of the
total least squares problem without regularization.

The following theorem characterizes the case that the right–most
eigenvalue is negative.
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maximum real solution of a quadratic eigenproblem

Positivity of λ̂ ct.

Theorem 2
The maximal real eigenvalue λ̂ of the quadratic problem

(W + λI)2x − δ−2hhT x = 0

is negative if and only if W is positive definite and

‖W−1h‖2 < δ.

For the quadratic eigenproblem occuring in regularized total least
squares it holds that

‖W−1h‖2 = ‖L(AT A− f (x)I)−1AT b‖2.

For the standard case L = I the right-most eigenvalue λ̂ is always
nonnegative if δ < ‖xTLS‖2.
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maximum real solution of a quadratic eigenproblem

Convergence

Theorem (Sima et al.) Assume that

min
x 6=0 : Lx=0

‖Ax‖22
‖x‖22

≥ f (x0). (∗)

Then the algorithm provides a sequence of vectors {x j} for which the
function f is monotonically decreasing:

0 ≤ f (x j+1) ≤ f (x j), j = 0, 1, . . . .

Theorem 3
Under the condition (*) every limit point of {x j} is a global minimizer of

f (x) :=
‖Ax − b‖22
1 + ‖x‖22

, subject to ‖Lx‖2 = δ.

Beck & Teboulle (2006) proved the convergence of Sima’s algorithm if
the equality constraint is replaced by the inequality constraint
‖Lx‖2 ≤ δ.
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