Computing A^α, log(A) and Related Matrix Functions by Contour Integrals

MIMS New Directions Workshop
Functions of Matrices
May 16th, 2008

Nick Hale
nick.hale@comlab.ox.ac.uk
University of Oxford

with

Nick Higham
University of Manchester

and

Nick Trefethen
University of Oxford
Computing A^α, $\log(A)$ and Related Matrix Functions by Contour Integrals

MIMS New Directions Workshop
Functions of Matrices
May 16th, 2008

Nick Hale
nick.hale@comlab.ox.ac.uk
University of Oxford

with
Nick Higham
University of Manchester
and
Nick Trefethen
University of Oxford
A Definition

$f(A) := \frac{1}{2\pi i} \int_{\Gamma} f(z)(zI - A)^{-1} \, dz$

- f applied to a complex scalar value z
- positively orientated closed contour within region of analyticity of f, and surrounding the spectrum $\sigma(A)$
- square matrix
- analytic function
- resolvent

An Idea

approximate the integral above numerical via some quadrature scheme

- composite trapezium rule
- analytic integrand
- geometric convergence
Whistle-stop Trapezium Rule Revision (part 1)

\[I(f) = \int_{\Gamma} f(z)\,dz \approx \sum_{j=1}^{N} w_k f(z_k) = I_N(f) \]

- trapezium rule over a circle in the complex plane

\[I(f) = \int f(z)\,dz = i \int_{0}^{2\pi} e^{i\theta} f(e^{i\theta})\,d\theta \]

\[\approx \frac{2\pi i}{N} \sum_{j=1}^{N} z_j f(z_j) = I_N^T(f) \]
Whistle-stop Trapezium Rule Revision (part 1)

\[I(f) = \int f(z)\,dz \approx \sum_{j=1}^{N} w_k f(z_k) = I_N(f) \]

- trapezium rule over a circle in the complex plane

\[I(f) = \int f(z)\,dz = i \int_{0}^{2\pi} e^{i\theta} f(e^{i\theta})\,d\theta \]
\[\approx \frac{2\pi i}{N} \sum_{j=1}^{N} z_j f(z_j) = I^T_N(f) \]

Theorem (Poisson 1820, Davis 1950)

if \(f(z) \) is analytic in the annulus \(1/R \leq |z| \leq R \) for some \(R > 1 \) then

\[|I(f) - I^T_N(f)| = O(R^{-N}) \]
Whistle-stop Trapezium Rule Revision (part 2)

\[I(f) = \int_{\Gamma} f(z) \, dz \approx \sum_{j=1}^{N} w_k f(z_k) = I_N(f) \]

- trapezium rule over a periodic interval

\[I(f) = \int_{0}^{2\pi} f(t) \, dt \approx \frac{2\pi}{N} \sum_{j=1}^{N} f(t_j) = I_N^T(f) \]

Corollary

if \(f(z) \) is \(2\pi \) periodic and analytic in the strip \(|\text{Im}(z)| \leq \alpha \) then

\[|I(f) - I_N^T(f)| = O(e^{-\alpha N}) \]
A Definition

\[f(A) := \frac{1}{2\pi i} \int_{\Gamma} f(z)(zI - A)^{-1} \, dz \]

analytic function

\(f \) applied to a complex scalar value \(z \)

square matrix

positively orientated closed contour within region of analyticity of \(f \), and surrounding the spectrum \(\sigma(A) \)

resolvent

An Idea

approximate the integral above numerical via some quadrature scheme

composite trapezium rule + analytic integrand geometric convergence
A Definition

analytic function

\[f(A) := \frac{1}{2\pi i} \int_{\Gamma} f(z)(zI - A)^{-1} \, dz \]

square matrix

resolvent

positively orientated closed contour within region of analyticity of \(f \), and surrounding the spectrum \(\sigma(A) \)

An Idea

approximate the integral above numerical via some quadrature scheme

\[f(A) \approx \sum_{j=1}^{N} w_j f(z_j)(z_jI - A)^{-1} = f_N(A) \]
A Definition

An analytic function applied to a complex scalar value z is given by:

$$f(A)b = \frac{1}{2\pi i} \int_{\Gamma} f(z)[(zI - A)b] \, dz$$

where Γ is a positively orientated closed contour within the region of analyticity of f, and surrounding the spectrum $\sigma(A)$.

An Idea

Approximate the integral above numerically via some quadrature scheme:

$$f(A)b \approx \sum_{j=1}^{N} w_j f(z_j)[(z_jI - A)b] = f_N(A)b$$
An Example

suppose $f(z)$ is analytic in $\mathbb{C}\setminus(-\infty, 0]$ and $\sigma(A) \in [m, M] \subset (0, \infty)$
An Example

suppose \(f(z) \) is analytic in \(\mathbb{C} \setminus (-\infty, 0] \) and \(\sigma(A) \in [m, M] \subset (0, \infty) \)

e.g. \[\begin{array}{l}
\sqrt{A} \\
A^\alpha \\
\log(A) \\
\Gamma(A) \\
tanh A^{1/2}
\end{array} \] practical

(e.g. positive definite
(this will be relaxed a little later on)
An Example

suppose $f(z)$ is analytic in $\mathbb{C} \setminus (-\infty, 0]$ and $\sigma(A) \in [m, M] \subset (0, \infty)$
An Example

suppose \(f(z) \) is analytic in \(\mathbb{C} \setminus (-\infty, 0] \) and \(\sigma(A) \in [m, M] \subset (0, \infty) \)

let \(\Gamma \) be a circle about \([m, M]\)
passing through \((0, m)\)
An Example

suppose $f(z)$ is analytic in $\mathbb{C}\setminus(-\infty, 0]$ and $\sigma(A) \in [m, M] \subset (0, \infty)$

let Γ be a circle about $[m, M]$ passing through $(0, m)$

approximate the integral via an N-point trapezium rule
An Example

suppose $f(z)$ is analytic in $\mathbb{C}\setminus(-\infty, 0]$ and $\sigma(A) \in [m, M] \subset (0, \infty)$

let Γ be a circle about $[m, M]$ passing through $(0, m)$

approximate the integral via an N-point trapezium rule

the integrand is analytic in an annulus, so Poisson's result tells us convergence is geometric

the rate of this convergence is determined by the width of the annulus
An Example

suppose $f(z)$ is analytic in $\mathbb{C} \setminus (-\infty, 0]$ and $\sigma(A) \in [m, M] \subset (0, \infty)$

let Γ be a circle about $[m, M]$ passing through $(0, m)$

approximate the integral via an N-point trapezium rule

the integrand is analytic in an annulus, so Poisson's result tells us convergence is geometric

the rate of this convergence is determined by the width of the annulus

if A is ill-conditioned, i.e. $0 < m \ll M$, this method will require at least $O(M/m)$ matrix inversions (or linear solves) to get any accuracy at all
A Better Idea

use the whole region of analyticity

\[\subseteq \]
A Better Idea

use the whole region of analyticity

by finding a conformal map from a much thicker annulus

i.e. introduce a change of variables in the integral

\[
\int_{\Gamma} f(z)(zI - A)^{-1} \, dz = \int_{\gamma} f(g(s))(g(s)I - A)^{-1} g'(s) \, ds
\]
A Conformal Map

Elliptic function

\[s \]

\[t \]

\[u \]

\[z \]

\[\log \]

\[\text{Möbius} \]
A Conformal Map

\[z(t) = \sqrt{mM} \left(\frac{k^{-1} + \text{sn}(t|k^2)}{k^{-1} - \text{sn}(t|k^2)} \right) \]

\[k = \sqrt{\frac{M}{m} - 1} \bigg/ \sqrt{\frac{M}{m} + 1} \]
A Method

\[t_j = -K + \frac{iK'}{2} + 2 \left(\frac{j - \frac{1}{2}}{N} \right) K, \quad j = 1 \ldots 2N \]

\[z_j = z(t_j) = \sqrt{mM} \left(\frac{k^{-1} + \text{sn}(t_j | k^2)}{k^{-1} - \text{sn}(t_j | k^2)} \right) \]

\[f_N(A) = \frac{2iK \sqrt{mM}}{N k \pi} \sum_{j=1}^{2N} f(z_j)(z_j I - A)^{-1} \frac{\text{cn}(t_j | k^2) \text{dn}(t_j | k^2)}{(k^{-1} - \text{sn}(t_j | k^2))^2} \]

complete elliptic integrals
A Method

\[t_j = -K + \frac{iK'}{2} + 2 \frac{(j - \frac{1}{2})K}{N}, \quad j = 1 \ldots 2N \]

\[z_j = z(t_j) = \sqrt{mM} \left(\frac{k^{-1} + \text{sn}(t_j|k^2)}{k^{-1} - \text{sn}(t_j|k^2)} \right) \]

\[f_N(A)b = \frac{2iK \sqrt{mM}}{Nk\pi} \sum_{j=1}^{2N} f(z_j) \left[(z_jI - A)b \right] \frac{\text{cn}(t_j|k^2)\text{dn}(t_j|k^2)}{(k^{-1} - \text{sn}(t_j|k^2))^2} \]
A Method

\[t_j = -K + \frac{iK'}{2} + 2\frac{(j - \frac{1}{2})K}{N}, \quad j = 1 \ldots 2N \]

complete elliptic integrals

\[z_j = z(t_j) = \sqrt{mM} \left(\frac{k^{-1} + \text{sn}(t_j | k^2)}{k^{-1} - \text{sn}(t_j | k^2)} \right) \]

\[
A \text{ Method}
\]

\[
A \text{ Theorem (HHT 2008)}
\]

\[\| f(A) - f_N(A) \| = O\left(e^{\varepsilon - \pi K' N/(2K)}\right) \]

where \(\pi K'/(2K) \sim \pi^2 / \log(M/m) \) as \(M/m \to \infty \)
A Method

\[t_j = -K + \frac{iK'}{2} + 2 \frac{(j - \frac{1}{2})K}{N}, \quad j = 1 \ldots 2N \]

Complete elliptic integrals

\[z_j = z(t_j) = \sqrt{mM} \left(\frac{k^{-1} + \text{sn}(t_j|k^2)}{k^{-1} - \text{sn}(t_j|k^2)} \right) \]

\[f_N(A) = \frac{2iK\sqrt{mM}}{Nk\pi} \sum_{j=1}^{2N} f(z_j)(z_jI - A)^{-1} \frac{\text{cn}(t_j|k^2)\text{dn}(t_j|k^2)}{(k^{-1} - \text{sn}(t_j|k^2))^2} \]

A Theorem (HHT 2008)

\[\| f(A) - f_N(A) \| = O(e^{\varepsilon \pi K'N/(2K)}) \]

Where \(\pi K'/(2K) \sim \pi^2/\log(M/m) \) as \(M/m \to \infty \)
A Method

\[t_j = -K + \frac{iK'}{2} + 2 \left(j - \frac{1}{2} \right) K, \quad j = 1 \ldots 2N \]

complete elliptic integrals

\[z_j = z(t_j) = \sqrt{mM} \left(\frac{k^{-1} + \text{sn}(t_j|k^2)}{k^{-1} - \text{sn}(t_j|k^2)} \right) \]

\[f_N(A) = \frac{2iK\sqrt{mM}}{Nk\pi} \sum_{j=1}^{2N} f(z_j)(z_j I - A)^{-1} \frac{\text{cn}(t_j|k^2)\text{dn}(t_j|k^2)}{(k^{-1} - \text{sn}(t_j|k^2))^2} \]

A Theorem (HHT 2008)

\[\| f(A) - f_N(A) \| = O\left(e^{-\pi^2 N/(\log(M/m)+3)}\right) \]
% method1.m - evaluate f(A) by contour integral. The functions
% ellipkdp and ellipjc are from Driscoll's SC Toolbox.

f = @sqrt; % change this for another function f
A = pascal(6); % change this for another matrix A
fA = sqrtm(A); % change this if f is not sqrt
I = eye(size(A));
e = eig(A); m = min(e); M = max(e); % in practice these would be estimated
k = (sqrt(M/m)-1)/(sqrt(M/m)+1);
L = -log(k)/pi;
[K,Kp] = ellipkdp(L);

for N = 5:5:45
 t = .5i*Kp - K + (.5:N)*2*K/N;
 [sn,cn,dn] = ellipjc(t,L);
 z = sqrt(m*M)*((1/k+sn)./(1/k-sn));
 dzdt = sqrt(m*M)/k*cn.*dn./(1/k-sn).^2;
 fNA = zeros(size(A));
 for j = 1:N
 fNA = fNA + f(z(j))*inv(z(j)*I-A)*dzdt(j);
 end
 fNA = -4*K*imag(fNA)/(pi*N);
 error = norm(fNA-fA)/norm(fA);
 fprintf('%4d %16.12f
', N, error)
end

An Example

>> method1

5 0.327965641207
10 0.020386977261
15 0.000958510165
20 0.000040667133
25 0.000001628827
30 0.000000062853
35 0.000000002363
40 0.000000000087
45 0.000000000003

M/m ≈ 10^5
Complex Eigenvalues
A Complex Example

\begin{verbatim}
n = 32;
D = gallery('chebspec',n);
D = D(2:n,2:n);
I = eye(n-1);
A = I - (0.2/n)*D
\end{verbatim}

\[\Gamma(A) \]

50\% of predicted rate
m = 0.25, M = 2
Extensions

method2: when \((-\infty, 0)\) is just a branch cut, e.g. \(\log z, z^{\alpha}\)

\[
\| f(A) - f_N(A) \| = O(e^{-2\pi^2 N/(\log(M/m)+6)})
\]

method3: when \(f(z) = \sqrt{z}\)

\[
\| f(A) - f_N(A) \| = O(e^{-2\pi^2 N/(\log(M/m)+3)})
\]

- no complex arithmetic
- save factor of two in symmetry, regardless of whether \(A\) is real
- connections to best rational approximation (Zolotarev)
A Practical Example

\[
A = \text{gallery('poisson',n)};
b = \text{ones}(n^2,1);
\]

\[
M = 2\pi^2 / (n+1)^2
\]

```
Compute \( A^{1/2}b \) using both method3 and sqrtm(full(A))*b
```

<table>
<thead>
<tr>
<th>(n^2)</th>
<th>(M/m)</th>
<th>(N)</th>
<th>time</th>
<th>time (sqrtm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>10.1</td>
<td>8</td>
<td>0.01</td>
<td>0.0006</td>
</tr>
<tr>
<td>64</td>
<td>32.8</td>
<td>9</td>
<td>0.02</td>
<td>0.005</td>
</tr>
<tr>
<td>256</td>
<td>117.</td>
<td>10</td>
<td>0.04</td>
<td>0.2</td>
</tr>
<tr>
<td>1024</td>
<td>441.</td>
<td>12</td>
<td>0.2</td>
<td>21.</td>
</tr>
<tr>
<td>4096</td>
<td>1712.</td>
<td>14</td>
<td>1.0</td>
<td>26 minutes</td>
</tr>
<tr>
<td>16384</td>
<td>6744.</td>
<td>15</td>
<td>6.0</td>
<td><1 day?</td>
</tr>
</tbody>
</table>

Large enough for 10 digits of relative accuracy!
An Example for Brian Davies

\[A = \text{gallery('frank',12)}; \]

\[
\begin{array}{cccccccccccc}
12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
11 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
10 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
9 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
8 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
7 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
6 & 6 & 5 & 4 & 3 & 2 & 1 \\
5 & 5 & 4 & 3 & 2 & 1 \\
4 & 4 & 3 & 2 & 1 \\
3 & 3 & 2 & 1 \\
2 & 2 & 1 & 1 \\
1 & 1 \\
\end{array}
\]

\[m \approx 0.031 \]

\[M \approx 32.2 \]
An Example for Brian Davies

\[
A = \text{gallery('frank',12)};
\]

\[
m \approx 0.031 \\
M \approx 32.2
\]
Comments

• most suitable for (but not limited to) $f(A)b$ problems
• fully parallelisable - one matrix inversion / system solve per processor
• a slick way of solving shifted systems? Hessenberg form
• need some heuristic for choosing m & M when eigenvalues are complex
• more general analyticity / eigenvalue assumptions?

References

Comments

• most suitable for (but not limited to) $f(A)b$ problems
• fully parallelisable - one matrix inversion / system solve per processor
• a slick way of solving shifted systems? Hessenberg form
• need some heuristic for choosing m & M when eigenvalues are complex
• more general analyticity / eigenvalue assumptions?

References

% method1.m - evaluate f(A) by contour integral. The functions
% ellipkkp and ellipjc are from Driscoll's SC Toolbox.

f = @sqrt; % change this for another function f
A = pascal(6); % change this for another matrix A
fA = sqrtm(A); % change this if f is not sqrt
I = eye(size(A));
e = eig(A); m = min(e); M = max(e);
k = (sqrt(M/m)-1)/(sqrt(M/m)+1);
L = -log(k)/pi;
[K,Kp] = ellipkkp(L);
for N = 5:5:45
 t = .5i*Kp - K + (.5:N)*2*K/N;
 [sn,cn,dn] = ellipjc(t,L);
 z = sqrt(m*M)*((1/k+sn)./(1/k-sn));
 dzdt = sqrt(m*M)/k*cn.*dn./(1/k-sn).^2;
 fNA = zeros(size(A));
 parfor j = 1:N
 fNA = fNA + f(z(j))*inv(z(j)*I-A)*dzdt(j);
 end
 fNA = -4*K*imag(fNA)/(pi*N);
 error = norm(fNA-fA)/norm(fA);
 fprintf('%4d %16.12f
', N, error)
end

Parallelisation

trivial parallelisation using MATLAB's parallel toolbox