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Introduction

Spectral method + discontinuous coefficients =
Not every applied mathematician’s first choice
(not exponential convergence, large dense matrices)
Why not use FEM?

Will show that planewave expansion method has several desirable
features that make it competitive with FEM

◮ converges at same rate as FEM on uniform grid

◮ can use FFT to make linear systems effectively sparse

◮ optimal preconditioner

Physicists have tried using smooth coefficients... will show if this is
a good idea or not.

Will see that regularity plays and important role in everything.
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Cross section of a PCF

Micro−structure
with air holes

Larger air inclusion
where light is mostly guided
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Problem Definition

Idea: given PCF structure and frequency, look for existence of light.

Maxwell’s Equations and H(x , y , z) = (h(x , y) + hz(x , y)ẑ) e
iβz

⇒ (formally):

−∇2h+ V h+ (∇U)× (∇× h) = −β2h on R
2,

where h = (hx , hy , 0), and V = V (x , y) and U = U(x , y) are given
piecewise constant functions.

Some V and U regimes allow further simplification:

−∇2h+ V h = −β2h on R
2.

Can decouple this into hx and hy .
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Find σ(L) where
L := −∇2 + V (x) + K

operates on L2(R2), with domain D(L) = H2(R2), V ∈ L∞(R2),
K is a constant.
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Vp

Vp + Vc Vsuper

σ(Vp) = σess(Vp) = σess(Vp + Vc),
σ(Vsuper ) = σess(Vsuper ) ≈ σ(Vp + Vc).
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Floquet/Bloch Transform
V periodic with period cell Ω = (−1

2 ,
1
2)

2 ⇒ use Floquet/Bloch
theory. It says... since the coefficients are periodic, every
eigenfunction can be separated into modes that have the form

h(x) = ei2πξ·x u(x)

with u periodic where ξ is from the first Brillouin zone
B = [−π, π]2. We get a family of operators parameterized by
ξ ∈ B . For each fixed ξ ∈ B ,

L on L2(R2) becomes Lξ = −(∇+ iξ)2 + V (x) + K on L2p.

The key result is

σ(L) =
⋃

ξ∈B

σ(Lξ).
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Planewave Expansion Method
To apply the planewave expansion method to

−(∇+ iξ)2u + Vu + Ku = λu on Ω

we look for approximate eigenfunctions of the form

uG (x) =
∑

k∈Z
2
G

[uG ]k e
i2πk·x

where Z
2
G = Z

2 ∩ B(0,G), and [·]k denotes Fourier coefficient with index
k, and G ∈ N. Comparing coefficients...

(|2πk+ ξ|2 + K)[uG ]k +
∑

|k′|≤G

[V ]k−k′ [uG ]k′ = λG [uG ]k k ∈ Z
2
G ,

which is equivalent to a matrix eigenproblem

Au = λGu

where u is a vector of Fourier coefficients [uG ]k for |k| ≤ G and

A = D +W is Hermitian, positive definite. V even ⇒ A s.p.d.
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Implementation

◮ Want smallest eigenvalues ⇒ subspace iteration with A−1.
E.g. Arnoldi’s method (ARPACK).

◮ Each subspace iteration requires a solve with A . Use PCG.

◮ Diagonal scaling is optimal preconditioner for solves with A.
Theorem to support this - uses Gershgorin’s circle theorem.

◮ Main cost: multiplications with A . Use FFT ⇒ O(N logN)
ops. (N = O(G 2)).
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Variational Problem

For fixed ξ ∈ B , find λ ∈ R and 0 6= u ∈ H1
p such that

a(u, v) = λ (u, v)L2(Ω) ∀v ∈ H1
p (Ω)

a(u, v) =

∫

Ω
(∇+ iξ) u(∇+ iξ) v + (V + K )uvdx

H1
p = {f |Ω ∈ H1(Ω) : f periodic}

a(·, ·) is bounded, coercive and Hermitian.
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Spectral Galerkin Method

The planewave expansion method can be written as the following
spectral Galerkin method. Define

SG := span{ei2πk·x : k ∈ Z
2, |k| ≤ G} ⊂ H1

p .

Find λG ∈ R and 0 6= uG ∈ SG such that

a(uG , vG ) = λG (uG , vG )L2(Ω) ∀vG ∈ SG

which is equivalent to the same matrix eigenproblem

Au = λGu.

Richard Norton and Robert Scheichl

Convergence Analysis of Planewave Expansion Methods for 2D Schrödinger Operators with Discontinuous Periodic Potentials



Introduction Method Regularity Error Analysis Optimal Preconditioner Smoothing Conclusion

Periodic Sobolev Spaces

◮ Can define D′
p(R

2) - space of periodic distributions.

◮ Every u ∈ D′
p(R

2) has well-defined Fourier coefficients and
Fourier Series.

For s ∈ R define

Hs
p := {u ∈ D′

p(R
2) : ‖u‖Hs

p
< ∞}

where

‖u‖2Hs
p
:=

∑

k∈Z2

|k|2s⋆ |[u]k|2, and |k|⋆ =
{
1 k = 0

|k| k 6= 0

Regularity determined from decay of Fourier coefficients.
Also have expected Sobolev embeddings and inequalities.
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Special Classes of Periodic Functions

Starting point for regularity... V ∈ Hs
p for what s ∈ R?

Xp := {f ∈ Hs
p for any s < 1/2} ∩ L∞(R2)

Yp := {f ∈ D′
p(R

2) : Fn(f ) . n−1 for all n ∈ N} ∩ L∞(R2).

where Fn(f ) :=





∑

|k1|+|k2|=n

|[f ]k|
2





1/2

Easy to show Yp ⊂ Xp. Also true that Yp 6= Xp . What kind of
functions are in Xp or Yp?
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Examples of V in Yp

|[V ]k| . |k|−3/2
⋆ ⇒ V ∈ Yp

|[V ]k| . |k1|−1
⋆ |k2|−1

⋆ ⇒ V ∈ Yp

Richard Norton and Robert Scheichl
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Regularity of Eigenfunctions
Suppose V ∈ Xp and u ∈ H1

p is an eigenvector of our variational
problem. Then u is a weak solution to

Lu = f on Ω, periodic b.c.s,

where L := −(∇+ iξ)2 + K and f := λu − Vu.
Steps for Regularity:

1. Easy step:

u ∈ H1
p and V ∈ L∞ ⇒ f ∈ L2p

⇒ u ∈ H2
p

2. Technical step:

u ∈ H2
p and V ∈ H

1/2−ǫ
p

(Saranen & Vainikko)
=⇒ Vu ∈ H

1/2−ǫ
p

=⇒ f ∈ H
1/2−ǫ
p

(Lions & Magenes)
=⇒ u ∈ H

5/2−ǫ
p .
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Approximation Error

We use this regularity to get

inf
χ∈SG

‖u − χ‖H1
p
≤ G−3/2+ǫ‖u‖

H
5/2−ǫ
p

Richard Norton and Robert Scheichl
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Error Analysis - the Solution Operator

◮ Define solution operator T : L2p → H1
p by

a(Tf , v) = (f , v) ∀v ∈ H1
p (Ω)

◮ Define TG : L2p → SG for approx. var. problem.

◮ T : H1
p → H1

p and TG : H1
p → H1

p are bounded, compact,
self-adjoint and positive definite w.r.t. a(·, ·).

◮ (λ, u) eigenpair of a(·, ·) ⇐⇒ ( 1λ , u) eigenpair of T .

(Now we know that σ(Lξ) = σd (Lξ), i.e. no essential spectrum so ok to

only talk about eigenvalues).
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Using Babuska & Osborn theory we get...

Theorem
V ∈ Xp, (λ, u) eigenpair of our variational problem, λ simple,

‖u‖H1
p
= 1. Then, for sufficiently large G , ∃ an eigenpair (λG , uG )

of the approx. var. problem, with ‖uG‖H1
p
= 1, such that

‖u − uG‖H1
p
. ‖(T − TG )u‖H1

p

|λ− λG | . |a((T − TG )u, u)| + ‖(T − TG )u‖2H1
p

Cea’s Lemma and Galerkin Orthogonality ⇒

‖(T − TG )u‖H1
p
. inf

χ∈SG

‖u − χ‖H1(Ω) ≤ G−3/2+ǫ‖u‖
H

5/2−ǫ
p

|a((T − TG )u, u)| .
(

inf
χ∈SG

‖u − χ‖H1(Ω)

)2

≤ G−3+2ǫ‖u‖2
H

5/2−ǫ
p

Theorem holds for multiple eigenvalues.
Richard Norton and Robert Scheichl
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Error Analysis

‖u − uG‖H1
p
. G−3/2+ǫ

|λ− λG | . G−3+2ǫ

Not exponential since u /∈ C∞

Richard Norton and Robert Scheichl
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An Example

Problem 1 Problem 2

The period cell for V (x) in Problems 1 and 2. V = −162.0 in the
black regions and V = −10.4 in the white regions.
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Observed Convergence
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Eigenvalue error (a) and eigenfunction error in the H1
p norm (b) plotted against G for

selected eigenpairs in Problem 1 (1st-5th eigenpairs) and in Problem 2 (23rd-27th

eigenpairs), where ξ = (0, 0) (xi0), (π, π) (xi1), and (π
5
, π
5
) (xi2). Reference

solution computed with G = 210 − 1.
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Optimal Preconditioner
Define our preconditioner to be

P := diag(A).

Want to prove
κ(P−1A) ≤ C .

Idea: Only ones on diagonal of P−1A. Gershgorin’s Circle Theorem
then says that all the eigenvalues of P−1A will be in a disc
centered at 1. Disc will have small radius if sum of off diagonal
entries along every row is small. Off diagonal entries are (scaled)
[V ]k−k′ and from regularity of V we know these decay.

1

r

Richard Norton and Robert Scheichl
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Definition of A

Let Z2
G := Z

2 ∩ B(0,G ) and N = |Z2
G |.

Define an ordering of the elements of Z2
G , i : Z

2
G → N (ascending

magnitude).

Then
A = D +W

where D and W have entries

Di(k),i(k) = |ξ + 2πk|2+K ∀k ∈ Z
2
G ,

Wi(k),i(k′) = [V ]k−k′ ∀k, k′ ∈ Z
2
G .

Richard Norton and Robert Scheichl
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A Sketch of the Proof
For any C > 1, if V ∈ Yp (∃ γ s.t. Fn(V ) ≤ γn−1) and
K ≥ C+1

C−12
11/4γ

√
G + |[V ]0|, then

summing the off diagonal entries in row i(k) of P−1A,

rk =
∑

k6=k′∈Z
2
G

|(P−1
A)i(k),i(k′)| ≤

1
|ξ+2πk|2+K−|[V ]0|

∑

k6=k′∈Z
2
G

|[V ]k−k′ | ≤ · · · ≤
C − 1

C + 1
.

Gershgorin’s Circle Theorem then says

σ(P−1A) ⊂ [1−C−1
C+1 , 1+

C−1
C+1 ] = [ 2

C+1 ,
2C
C+1 ] and so κ(P−1A) ≤ C .

1

r

Richard Norton and Robert Scheichl
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Compare the performance of preconditioner P with
K = ‖V ‖L∞ + π2 + 1

2 ≈ 172.4 and K = 5000.

IRA restarts PCG iterations
G N I P PK=5000 I P PK=5000

15 709 7 7 22 50 38 8
31 3001 7 7 41 99 38 8
63 12453 7 7 65 204 39 8
127 50617 7 7 96 410 39 8

Large K ⇒ more IRA restarts, since relative spacing of eigenvalues
is decreased.

We actually used the following preconditioner...

P =

[
A11 0
0 diag(A22)

]
.

Richard Norton and Robert Scheichl
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Smoothing

Define normalized Gaussian

G(x) = 1

2π∆2
exp

(
− |x|2
2∆2

)

for small ∆ > 0. Perturb L to

L̃ = −∇2 + Ṽ (x) + K

where

Ṽ (x) = (G ∗ V )(x) =

∫

R2

G(x− y)V (y)dy.

Richard Norton and Robert Scheichl
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Properties of Ṽ

◮ Ṽ (x) → V (x) pointwise a.e. as ∆ → 0.

◮

[Ṽ ]k = e−2π2|k|2∆2
[V ]k

◮ If V ∈ Yp and ∆ ∈ (0, 1) then

‖Ṽ − V ‖
H−1

p
. ∆

3
2

◮ If V ∈ Yp and ∆ ∈ (0, 1) then

‖Ṽ ‖Hs
p
.





(∆−1)s−1/2 s > 1
2

(1 + log(∆−1))1/2 s = 1
2

1 s < 1
2 .

Richard Norton and Robert Scheichl
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Regularity for smooth problem
Suppose V ∈ Yp, ∆ ∈ (0, 1) and ũ is an eigenfunction of the
smooth problem. Then ũ ∈ C∞(R2) and

‖ũ‖Hs
p
. ζ(∆−1) ‖u‖H1

p

where

ζ(∆−1) :=

{ (∆−1)s−5/2, for s > 5
2 ,

(1 + log(∆−1))1/2, for s = 5
2 ,

1, for s < 5
2 .

Approximation Error

inf
χ∈SG

‖ũ − χ‖H1
p
.

{
(∆−1)sG−s−3/2‖ũ‖H1

p
s > 0

CG ,∆−1G−3/2‖ũ‖H1
p

CG ,∆−1 = min{G ǫ, (1 + log(∆−1))1/2}.
Richard Norton and Robert Scheichl
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Error of Smoothing

Define T̃ for the smooth variational problem and apply Babuska &
Osborn.

‖u − ũ‖H1
p
. ‖(T − T̃ )u‖H1

p

|λ− λ̃| . |a((T − T̃ )u, u)| + ‖(T − T̃ )u‖H1
p
‖(T − T̃ ∗)u‖H1

p

where T̃ ∗ is the adjoint of T̃ w.r.t. a(·, ·).

Richard Norton and Robert Scheichl
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Bounding the RHS

We bound ‖(T − T̃ )u‖H1
p
using Strang’s 1st Lemma.

‖Tu − T̃ u‖H1
p
. inf

v∈H1
p

{
‖Tu − v‖H1

p
+sup
w∈H1

p

|a(v ,w)− ã(v ,w)|
‖w‖H1

p

}

≤ sup
w∈H1

p

∫
Ω |(Ṽ − V )Tuw |dx

‖w‖H1
p

choosing v = Tu

≤ sup
w∈H1

p

‖Ṽ − V ‖
H−1

p
‖Tuw‖H1

p

‖w‖H1
p

. ∆3/2‖Tu‖H2
p

. ∆3/2‖u‖H1
p

Richard Norton and Robert Scheichl
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Error with Smoothing

The error splits into

error ≤
(

error of

smoothing

)
+

(
error of

Galerkin method

)

The result is... for any s > 0

‖u − ũG‖H1
p
. ∆3/2 +

{
(∆−1)sG−s−3/2

CG ,∆−1G−3/2

|λ− λ̃G | . ∆3/2 +

{
(∆−1)2sG−2s−3

C 2
G ,∆−1G

−3

Richard Norton and Robert Scheichl
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Balance Errors / Optimal Choice of Smoothing

Balance errors by taking ∆ = G r for some r ≤ 0. At best we get

‖u − ũG‖H1
p
. G−3/2 taking r ≤ −1

|λ− λ̃G | . G−3 logG taking r ≤ −2

Conclusion

Balance the errors ⇒ No amount of smoothing will improve the
rate of convergence.

Richard Norton and Robert Scheichl
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An Example
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Eigenvalue error (a) and eigenfunction error in the H1
p norm (b) plotted against ∆ for

selected eigenpairs in Problem 1 (1st-5th eigenpairs) and in Problem 2 (23rd-27th

eigenpairs), where ξ = 0 (xi0), (π, π) (xi1), and (π
5
, π
5
) (xi2). G = 28 − 1 used.
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Problem 1: eigenfunction error
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Problem 1: eigenvalue error

1 ∆ = 0
2 ∆ = 0
1 r = −1/2
2 r = −1/2
1 r = −1
2 r = −1
1 r = −3/2
2 r = −3/2

Errors for the 1st eigenpair in Problem 1 plotted against G with ∆ = G r for different

r ∈ R. (Solid lines correspond to ξ = (0, 0), whereas dashed lines are ξ = (π, π).)

Reference solution computed with G = 210 − 1.
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Errors for the 1st eigenpair in Problem 2 plotted against G with ∆ = G r for different

r ∈ R. (Solid lines correspond to ξ = (0, 0), whereas dashed lines are ξ = (π
5
, π
5
).)

Reference solution computed with G = 210 − 1.
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Summary / Conclusions
◮ Put the planewave expansion method in Galerkin method

framework.
◮ Sharp regularity and convergence results for the standard

planewave expansion method, no smoothing.
◮ Optimal preconditioner.
◮ Improved regularity and convergence rate (w.r.t. G ) with

smoothing, but additional smoothing error.
◮ Quantified smoothing error. Sharp for eigenfunctions, not for

eigenvalues.
◮ Optimal choice of smoothing. Conclude that smoothing does

not help (but it does not hurt either).
◮ Numerical experiments agree with theory.
◮ Planewave expansion method competitive with FEM on

uniform grid.
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Further / Future Work

◮ Caveat: have assumed we have explicit formula for [V ]k. In
practice need approximation, e.g. sample V on uniform grid,
compute approximate [V ]k using FFT. Include this error.
Maybe smoothing is beneficial here.

◮ Extend analysis to full problem - Maxwell.

◮ Analysis of supercell method error.
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