# A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations

Bart Vandereycken

Seminar for Applied Mathematics, ETH Zürich

15th Leslie Fox Prize Meeting in Numerical Analysis June 27, 2011 The low-rank picture

### The low-rank picture

Given a matrix X, compute its low-rank approximation.

- Why low rank?
  - Like sparsity, low rank is a popular parsimonious structure.
  - Unlike sparsity, it can have global support.
- Why not SVD?
  - Assume that X is available.
  - Does not work if (some of) the entries of X are unavailable.
- Typical application: matrix equations and matrix completion.

#### The low-rank picture

Define the set

$$\mathcal{S}_+(k,n)=\{X:X\in\mathbb{R}^{n imes n},\;X=X^{\mathcal{T}},\;X\succeq0,\;\mathrm{rank}(X)=k\}.$$

Our low-rank solver in [V./Vandewalle '10] is based on

$$\min_X f(X) \quad \text{subject to } X \in \mathcal{S}_+(k, n). \tag{1}$$

Key points:

- Exploit smoothness of  $S_+(k, n)$  as a Riemannian manifold.
- Solve (1) using Riemannian optimization.
- Make the algorithm efficient: precondition the Hessian.

The Lyapunov equation

# Matrix equations

• Matrix equations: Lyapunov, Sylvester, Riccati

Abound in  $\mathcal{H}_2$ -control, model reduction by balanced truncation, stability analysis [Moore '81], [Antoulas '05], [Benner/Mehrmann/Sorensen '05], [Meerbergen/Spence '10], ...

• The generalized symmetric Lyapunov equation:

$$AXM^T + MXA^T = C$$

Given  $A, M, C \in \mathbb{R}^{n \times n}$ , solve for unknown matrix  $X \in \mathbb{R}^{n \times n}$ 

- Assume symmetry:  $A = A^T, M = M^T, C = C^T \Rightarrow X = X^T$ 

- Assume coercivity:  $A, M \succ 0, C \succeq 0 \Rightarrow X \succeq 0$
- Matrix X is not directly available without first solving the Lyapunov equation.

### Large-scale matrix equations

Matrix equations applied to large-scale problems, e.g. PDEs

- FEM discretized system A and mass M matrix
- rhs (load) matrix  $C = bb^T$ ,  $b \in \mathbb{R}^{n \times k_C}$ .



| Main problem            |                   |                                                                                |
|-------------------------|-------------------|--------------------------------------------------------------------------------|
| sparse $A, M$ is $O(n)$ | $\leftrightarrow$ | solving dense X is $O(n^2)$ memory<br>and $O(n^3)$ flops [Bartels/Stewart '72] |

 $\rightsquigarrow$  so  $n \gg 1000$  is problematic

## Low-rank approximation

Under reasonable conditions, we have the low-rank phenomenon: the singular values of X decay exponentially fast.

→ Decay depends on rank rhs *C*, spectrum of  $A - \lambda M$ , see [Penzl '00], [Antoulas/Sorenson/Zhou '02], [Grasedyck '04], ...

This means that X has low numerical rank k for a precision  $\epsilon$ .

 $\rightsquigarrow$  A has conditioning  $\kappa(A)$ :  $\mathbf{k} = O(\log(1/\epsilon)\log(\kappa(A)))$ 



Main problem

Compute the "best" rank-k approximation X efficiently in  $O(nk^c)$ .

# Existing methods

| $n < O(10^4)$               | Schur form [Bartels/Stewart '72]                    |
|-----------------------------|-----------------------------------------------------|
|                             | Hammarling, Jonsson, Kågström, Sorensen, Zhou,      |
|                             | Quintana-Ortí, van de Geijn, Granat, Kressner,      |
| store $A^{-1}$              | Sign function iteration [Roberts '71]               |
|                             | Beavers, Denman, Byers, Benner, Quintana-Ortí,      |
|                             | Grasedyck, Bauer,                                   |
| apply $(A - \sigma I)^{-1}$ | ADI [Wachspress '88]                                |
|                             | Penzl, Li, White, Gugercin, Simoncini, Hodel, Saak, |
| apply A                     | Krylov subspace [Saad '90]                          |
|                             | Hu, Reichel, Jaimoukha, Kasenally, Hochbruck,       |
|                             | Starke, Simoncini, Kressner,                        |
| levels $A_i$                | Multilevel methods [Rosen-Wang '95]                 |
|                             | Penzl, Grasedyck, Hackbusch, V., Vandewalle,        |

... many other solvers and hybrid combinations

# Krylov methods

Krylov subspace methods for  $AX + XA^T = bb^T$ 

• construct a Krylov basis  $V_k$ 

 $V_k = \operatorname{span}\{A^i b\}$  with  $i = 0 \dots k$  or  $i = -k \dots k$ 

• Galerkin condition: solve small Lyapunov equation for  $x_k$ 

 $(\boldsymbol{V}_k^{\mathsf{T}}\boldsymbol{A}\boldsymbol{V}_k)\boldsymbol{x}_k + \boldsymbol{x}_k(\boldsymbol{V}_k^{\mathsf{T}}\boldsymbol{A}\boldsymbol{V}_k)^{\mathsf{T}} = \boldsymbol{E}_k$ 

Approximation is X<sub>k</sub> = V<sub>k</sub>x<sub>k</sub>V<sub>k</sub><sup>T</sup> with x<sub>k</sub> such that the energy norm is minimized for the basis V<sub>k</sub> ⊗ V<sub>k</sub>

Drawbacks (and similar for most other methods):

- Compute low-rank solutions as a (deliberate) side-effect
- Factors  $V_k$  are not very good: only  $x_k$  optimized
- Slow convergence  $\rightsquigarrow$  high-rank factors  $\rightsquigarrow$  needs truncation

Proposed solution: improve factors by optimizing  $V_k$  directly.

Optimization on the manifold of low-rank matrices

# Outline of the method

The method we proposed in  $\left[V_{.}/V_{andewalle} \ '10\right]$  will

- minimize the energy norm,
- over the manifold of positive semidefinite (PSD) matrices of fixed rank k.

 $\begin{array}{ll} \min & f: \mathcal{S}_+(k,n) \to \mathbb{R}, \ X \mapsto \operatorname{tr}(XAXM) - \operatorname{tr}(XC), \\ \text{s.t.} & \mathcal{S}_+(k,n) = \{X: X \in \mathbb{R}^{n \times n}, \ X \succ 0, \ \operatorname{rank}(X) = k\}. \end{array}$ 

Scalability constraint for each step

- all operations,
- all data structures

must be  $O(nk^c)$ , c small.

# The objective function

The objective function

$$f: \mathcal{S}_+(k, n) \to \mathbb{R}, \ X \mapsto \operatorname{tr}(XAXM) - \operatorname{tr}(XC),$$

reflects a weighted norm of the error.

Proof:

• The vec( ) operator gives the isomorphism  $\mathbb{R}^{n^2} \simeq \mathbb{R}^{n \times n}$  as

$$\operatorname{tr}(X^{T}Y) = \operatorname{vec}(X)^{T}\operatorname{vec}(Y).$$

• AXM + MXA = C is a linear system of size  $n^2$ :

$$\mathcal{L}\operatorname{vec}(X) = \operatorname{vec}(C) \quad \text{with } \mathcal{L} = A \otimes M + M \otimes A.$$

### The objective function

• Take  $\mathcal{L}$ -norm of the error  $E = X - X_*$ :

$$\|\operatorname{vec}(E)\|_{\mathcal{L}}^{2} = \operatorname{vec}(E)^{T} \mathcal{L} \operatorname{vec}(E)$$
$$= \operatorname{vec}(E)^{T} (A \otimes M + M \otimes A) \operatorname{vec}(E)$$
$$= 2 \operatorname{tr}(EMEA).$$

Work out the error E:

$$\|\operatorname{vec}(E)\|_{\mathcal{L}}^{2} = 2\operatorname{tr}[(X - X_{*})M(X - X_{*})A]$$
  
= 2 tr(XMXA) - 2 tr(XC) + 2 tr(X\_{\*}MX\_{\*}A)  
= 2f(X) + 2 tr(X\_{\*}MX\_{\*}A).

#### Minimizing $f(X) \iff$ minimizing $\|\operatorname{vec}(E(X))\|_{\mathcal{L}}$

Does  $\|\operatorname{vec}(E)\|_{\mathcal{L}}$  make sense? If  $A, M \succ 0$ , then  $\mathcal{L} \succ 0$ .

#### Riemannian optimization

#### How do we optimize over

$$\mathcal{S}_+(k,n) = \{X : X \in \mathbb{R}^{n \times n}, X \succ 0, \operatorname{rank}(X) = k\}?$$

Main obstacle:  $S_+(k, n)$  is not a vector space since

$$\exists X, Y \in \mathcal{S}_+(k, n) \Rightarrow X + Y \notin \mathcal{S}_+(k, n).$$

In general, rank constraints are very difficult. Existing approaches

- Factoring  $X = YY^T$  (non-local optimizers YQ)
- SDP relaxation (drop rank constraint)

are not suitable.

**Problem:** How to optimize on the *curved* space  $S_+(k, n)$ ?



Manifold property is well known in [algebraic geometry] and [Helmke/Moore '94].

# Riemannian algorithms

- The idea of exploiting the geometry of manifolds turns up in several areas: geometric integration, Lie group methods, ...
- Riemannian optimization: several "classic" algorithms for unconstrained optimization have been adapted to smooth manifolds
  - Steepest descent, conjugate gradients (CG), Newton
  - See: [Luenberger '72], [Gabay '82], [Shub '86], [Smith '93], [Udrişte '94], [Helmke/Moore '94], [Mahony '94], [Owren/Welfert '96], [Edelman/Arias/Smith '98], ..., [Adler *et.al.* '02], [Absil/Mahony/Sepulchre '08], ...
- Relies on a few basic principles from differential geometry.
- We need new derivations for the geometry of  $S_+(k, n)$ .

# Riemannian optimization?

#### **Classic unconstrained optimization**: find min f on $\mathbb{R}^n$



At the current iterate x

1 Determine a step p

e.g. steepest descent, conjugate gradient, newton direction

Output a better point x<sub>+</sub> = x + p robust with line-search or trust region

3 Loop: 
$$x \leftarrow x_+$$



- What are the steps p ?
  - steepest descent: grad f(x)

Newton direction: second-order model with Hess f(x)

How to get x<sub>+</sub> = x + p ?
 every iterate x, y ∈ S<sub>+</sub>(k, n) but x + y ∉ S<sub>+</sub>(k, n)

**Property:**  $S_+(k, n)$  is locally Euclidean = tangent space



Properties of the tangent space  $T_{\times}S_{+}(k, n)$ :

- Contains tangent vectors  $\dot{\gamma}(0) = \xi$  with a curve  $\gamma(t)$  on  $\mathcal{S}_+(k, n)$
- Linear space:  $\xi + \eta \in T_x S_+(k, n)$  for all  $\xi, \eta \in T_x S_+(k, n)$
- We can go back to the manifold by retracting, e.g., projecting retraction  $R_x$  is a smooth map  $T_x S_+(k, n) \rightarrow S_+(k, n)$

Result: Standard unconstrained optimization



At the current iterate x in the tangent space  $T_x S_+(k, n)$ :

- **1** Determine a step  $\xi \in T_x S_+(k, n)$ steps are based on the Riemannian gradient and Hessian
- **2** Compute a better point  $x_+ = R_x(\xi)$
- **3** Loop:  $x \leftarrow x_+$

Optimize  $\hat{f}_x$ , the pullback of f through  $T_x S_+(k, n)$ :

 $\widehat{f}_x: T_x\mathcal{S}_+(k,n) \to \mathbb{R}, \ \xi \mapsto f \circ R_x.$ 

The embedded geometry of  $S_+(k, n)$ 

# $\mathcal{S}_+(k,n)$ as an embedded submanifold

**Elements** of  $S_+(k, n)$ :  $X = VDV^T$  as EVD,

$$X = \begin{bmatrix} V & V_{\perp} \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V^T \\ V_{\perp}^T \end{bmatrix}, \quad D \in \mathbb{R}^{k imes k}$$
 diagonal.

**Tangent space** at  $X \in S_+(k, n)$ ,

$$T_{x}S_{+}(k,n) = \begin{bmatrix} V & V_{\perp} \end{bmatrix} \begin{bmatrix} S & C^{T} \\ C & 0 \end{bmatrix} \begin{bmatrix} V^{T} \\ V_{\perp}^{T} \end{bmatrix}, \ S = S^{T} \in \mathbb{R}^{k \times k}, C \in \mathbb{R}^{n-k \times k}$$
$$= VSV^{T} + \underbrace{(V_{\perp}C)}_{Z_{U} \in \mathbb{R}^{n \times k}} V^{T} + V \underbrace{(V_{\perp}C)}_{Z_{V} \in \mathbb{R}^{n \times k}}^{T}.$$

The Euclidean **metric**  $\langle \cdot, \cdot \rangle$  restricted to  $T_x S_+(k, n)$ 

$$\langle \xi, \eta \rangle_{\mathsf{X}} := \operatorname{tr}(\xi^{\mathsf{T}}\eta).$$

#### Retraction

#### Retraction: orthogonal projection onto a non-convex set

$$\begin{aligned} &R_x: T_x \mathcal{S}_+(k,n) \to \mathcal{S}_+(k,n) \\ &: \xi \mapsto \mathcal{P}_{\mathcal{S}_+(k,n)}(X+\xi) = \arg\min\{\|X+\xi-Z\|_{\mathsf{F}}: Z \in \mathcal{S}_+(k,n)\}. \end{aligned}$$

In [V./Vandewalle '10] we showed:

- Locally, well-defined and  $C^{\infty}$ .
- Since  $\operatorname{rank}(X + \xi) = 2k$ , can be computed in  $O(nk^2)$ .
- Second-order approximation of the geodesic with expansion

$$R_X(\xi) = X + \xi + P_X^p(\xi) X^{\dagger} P_X^p + O(||\xi||^3)$$

Useful for deriving the Riemannian Hessian ....

## Riemannian gradient

The Newton **step**  $\xi$  is the minimizer of the second-order model

$$m_k(\xi) = f(X_k) + \langle \operatorname{\mathsf{grad}} f(X_k), \xi 
angle_{X_k} + rac{1}{2} \langle \operatorname{\mathsf{Hess}} f(X_k)[\xi], \xi 
angle_{X_k}$$

• The Euclidean metric  $\langle \cdot, \cdot \rangle$  on each  $T_X S_+(k, n)$ :

$$\langle \xi, \eta \rangle_{\boldsymbol{X}} := \operatorname{tr}(\xi^{\mathsf{T}}\eta).$$

• The Riemannian gradient of f is the vector grad f such that

$$\frac{\operatorname{grad} f(X)}{\|\operatorname{grad} f(X)\|} = \operatorname{arg} \max_{\xi \in T_X \mathcal{S}_+(k,n), \, \|\xi\|=1} \mathsf{D} f(X)[\xi].$$

• Gradient is the direction of steepest ascent w.r.t.  $\langle \cdot, \cdot \rangle_X$ .

### Riemannian Hessian

The Newton **step**  $\xi$  is the minimizer of the second-order model

$$m_k(\xi) = f(X_k) + \langle \operatorname{\mathsf{grad}} f(X_k), \xi 
angle_{X_k} + rac{1}{2} \langle \operatorname{\mathsf{Hess}} f(X_k)[\xi], \xi 
angle_{X_k}$$

• The Riemannian Hessian of *f* is the unique linear and symmetric mapping Hess *f* 

Hess 
$$f : T_X \mathcal{S}_+(k, n) \to T_X \mathcal{S}_+(k, n),$$

such that

$$\langle \operatorname{Hess} f(X)[\xi], \xi \rangle_X = \left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \right|_{t=0} f(R_X(t\,\xi)).$$

• Valid because  $R_X$  is a second-order appr. to geodesic!

### Second-order model

Applied to f(X) = tr(XAXM) - tr(XC), we obtained analytical expressions for

• the gradient of f(X)

$$ext{grad} \ f(X) = P_{\mathcal{T}}(R), \quad R := AXM + MXA - C,$$

with  $P_T(Z) := P_V Z P_V + P_V^{\perp} Z P_V + P_V Z P_V^{\perp}$  the orthogonal projection onto  $T_X S_+(k, n)$ .

• the Hessian as matrix vector product

Hess  $f(X)[\xi] = P_T(A\xi M + M\xi A) + P_T^p(RP_T^p(\xi)X^{\dagger} + X^{\dagger}P_T^p(\xi)R)$ with  $P_T^p(Z) := P_V^{\perp}ZP_V + P_VZP_V^{\perp}$ 

 $\rightarrow$  second-order model can be evaluated in  $O(nk^2)$  flops.

Trust-Region Newton on the manifold

RLyap: final algorithm to solve for low-rank approximation of X.

• Choose<sup>1</sup> a rank *k*, minimize

$$\min_{X\in\mathcal{S}_+(k,n)}\operatorname{tr}(XAXM)-\operatorname{tr}(XC).$$

by the Riemannian Trust-Region (RTR) method of [Absil/Baker/Gallivan '07].

• Key step: solve Newton system

$$egin{aligned} m_k &: \mathcal{T}_{X_k}\mathcal{S}_+(k,n) o \mathbb{R}, \ & \xi \mapsto f(X_k) + \langle \operatorname{grad} f(X_k), \xi 
angle + rac{1}{2} \langle \operatorname{Hess} f(X_k)[\xi], \xi 
angle \end{aligned}$$

with truncated PCG to obtain step

$$\eta_k = \arg \min m_k(\xi) \quad \text{s.t. } \|\xi\| \leq \Delta_k.$$

<sup>1</sup>perform an outer loop to get the minimum rank for a desired residual

### Experimental results for RTR



Test problem: 1D Laplace with n = 1000, ranks k = 5, 10, 15, 20.

# Experimental results for RTR

Relative error of low-rank approximations for different ranks



Comparing truncated SVD ( $\circ$ ), min  $f_E$  ( $\circ$ ), CFADI<sup>2</sup>(5,20,10) ( $\times$ ), CFADI<sup>1</sup>(10,50,25) ( $\circ$ ), and KPIK<sup>2</sup> ( $\circ$ ). Test problem: RAIL benchmark [Benner/Saak '04] with n = 1357.

<sup>&</sup>lt;sup>2</sup>[Penzl '99],[Li/White '04] <sup>2</sup>[Simoncini '07]

Preconditioning

# Preconditioning

RTR uses (truncated) CG to solve the Newton system.

• Too many iterations for PDEs. Example RTR for 2D Laplace, k = 15, tol. gradient =  $10^{-10}$ :

| n                      | 150 <sup>2</sup> | 200 <sup>2</sup> | 250 <sup>2</sup> | 300 <sup>2</sup> | 350 <sup>2</sup> | 400 <sup>2</sup> | 450 <sup>2</sup> | 500 <sup>2</sup> |
|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| n <sub>outer</sub>     | 46               | 44               | 49               | 44               | 43               | 44               | 56               | 48               |
| $\sum n_{inner}$       | 1913             | 2173             | 2984             | 3158             | 4076             | 4185             | 5375             | 5622             |
| max n <sub>inner</sub> | 414              | 529              | 624              | 731              | 757              | 858              | 1004             | 1080             |

• Can we precondition CG?

The Riemannian Hessian is a modified Euclidean Hessian:

$$\mathcal{H}_X = P_X \underbrace{(A \otimes M + M \otimes A)}_{\mathcal{L}} P_X + P_X^p (X^{\dagger} \otimes R + R \otimes X^{\dagger}) P_X^p.$$

- Neglect curvature  $\rightsquigarrow$  precondition with  $P_X \mathcal{L} P_X$ .
- $P_X \mathcal{L} P_X$  is the (first-order) Gauss-Newton model of f(X) on  $\mathcal{S}_+(k, n)$ , cfr. [Adler/Dedieu/Margulies/Martens/Shub '02].

# Preconditiong with Gauss-Newton

Does it reduce the number of iterations?

- Observed to be mesh-independent.
- Same 2D Laplace example:

| prec.                   | n                      | 150 <sup>2</sup> | 200 <sup>2</sup> | 250 <sup>2</sup> | 300 <sup>2</sup> | 350 <sup>2</sup> | 400 <sup>2</sup> | 450 <sup>2</sup> | 500 <sup>2</sup> |
|-------------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| none                    | n <sub>outer</sub>     | 46               | 44               | 49               | 44               | 43               | 44               | 56               | 48               |
|                         | $\sum n_{inner}$       | 1913             | 2173             | 2984             | 3158             | 4076             | 4185             | 5375             | 5622             |
|                         | max n <sub>inner</sub> | 414              | 529              | 624              | 731              | 757              | 858              | 1004             | 1080             |
| $P_{x}\mathcal{L}P_{x}$ | n <sub>outer</sub>     | 39               | 40               | 42               | 46               | 47               | 48               | 47               | 49               |
|                         | $\sum n_{inner}$       | 83               | 83               | 91               | 94               | 96               | 101              | 88               | 93               |
|                         | max n <sub>inner</sub> | 14               | 13               | 15               | 13               | 13               | 13               | 12               | 10               |

- Is it faster?
  - Can be solved analytically [V./Vandewalle '10] for M = I.
  - Assuming  $(A + \lambda I)^{-1}$  is O(n), total cost is  $O(nk^2) \rightsquigarrow AMG$ .
  - Gauss-Newton as solver is not efficient (not small residual).

Performance of the Riemannian optimization approach is comparable with the state-of-the-art, yet more general.

RLyap compared with CFADI [Penzl '99],[Li/White '04] and KPIK [Simoncini '07] for 2D Laplace, rank one rhs.

|              |           | PCG with AMG |     |        |
|--------------|-----------|--------------|-----|--------|
|              |           | RLyap        | ADI | Krylov |
| $n = 500^2$  | time (s.) | 40           | 70  | 24     |
|              | rank X    | 12           | 19  | 36     |
| $n = 1000^2$ | time (s.) | 175          | 310 | 118    |
|              | rank X    | 12           | 18  | 38     |
| $n = 1500^2$ | time (s.) | 443          | 811 | 354    |
|              | rank X    | 12           | 19  | 44     |

Tol. on rel. residual =  $10^{-6}$ ;  $(A + \lambda I)^{-1}$  solved by PCG+AMG.

When the r.h.s. C is not of low rank, RLyap can be more efficient.

• Laplace; full matrix C, rank k approximated  $C_k$ .

|                          | solver    | RLyap   | CF-ADI          | RLyap           | CF-ADI          | RLyap           |
|--------------------------|-----------|---------|-----------------|-----------------|-----------------|-----------------|
|                          | rhs       | С       | C <sub>15</sub> | C <sub>15</sub> | C <sub>30</sub> | C <sub>30</sub> |
| n = 40000                | time (s.) | 70.3    | (38.7)          | 48.9            | 111.2           | 61.6            |
| $	au=1\mathrm{e}{-6}$    | rank X    | 23      | 35              | 25              | 49              | 27              |
|                          | residual  | 9.87e-7 | 2.67e-6         | 9.30e-7         | 8.61e-7         | 9.86e-7         |
| n = 80000                | time (s.) | 169.7   | (103.1)         | 116.8           | (232.1)         | 128.4           |
| $	au = 1\mathrm{e}{-6}$  | rank X    | 25      | 35              | 25              | 50              | 25              |
|                          | residual  | 9.89e-7 | 2.68e-6         | 9.81e-7         | 2.98e-6         | 9.90e-7         |
| n = 160000               | time (s.) | 176.8   | 139.5           | 104.7           | 300.9           | 125.5           |
| $\tau = 5\mathrm{e}{-5}$ | rank X    | 12      | 33              | 12              | 48              | 12              |
|                          | residual  | 1.44e-5 | 3.57e-5         | 3.35e-5         | 3.47e-5         | 1.44e-5         |

• RLyap can use a matrix-free C, other methods can not.

Thank you for your attention

## Second-order model

#### Accuracy of models with different Hessians



Figure: Relative error of the linear and quadratic models. The triangles indicate the second and third order convergence of the error.

Optimization problem is non-convex ~>> robustify Newton by TR!