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Introduction

Motivating example
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Introduction

Interesting Question

The two numerical methods have the same order of convergence but
completely different qualitative behaviour.

Is there a way to distinguish between these two methods?

A very powerful tool for addressing this question is backward error
analysis (modified equations).
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Introduction Ordinary Differential Equations

Modified equations for ODEs

dx

dt
= f (x),

and let xn be a numerical approximation of x of order p:

|x(n∆t)− xn| = O(∆tp).

Can I find X (t) satisfying another ODE (modified equation) such that:

|X (n∆t)− xn| = O(∆tp+q).
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Introduction Ordinary Differential Equations

Euler method-one dimension

xn+1 = xn + ∆tf (xn).

Modified equation:

dX

dt
= f (X )− ∆t

2
f ′(X )f (X ),

since
|X (n∆t)− xn| = O(∆t2).
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Introduction Ordinary Differential Equations

Sketch proof

dX

dt
= f (X ) + ∆tg(X ).

X (∆t) = X (0) +

Z ∆t

0

(f (X (s)) + ∆tg(X (s))) ds

= X (0) + ∆tf (X (0)) + ∆t2g(X (0)) +
∆t2

2
f (X (0))f ′(X (0)) +O(∆t3).

Assume x0 = X (0) then

X (∆t)− x1 = ∆t2

„
g(X (0)) +

1

2
f (X (0))f ′(X (0))

«
+O(∆t3),

and thus

g(x) = −1

2
f (x)f ′(x).

K. C. Zygalakis (University of Oxford) Modified Equation for SDEs 7 / 38



Introduction Stochastic Differential Equations

Stochastic Differential Equations and Numerical Methods

dx = v(x)dt + σ(x)dWt ,

Euler method:

xn+1 = xn + ∆tv(xn) +
√

∆tσ(xn)ξn,

Milstein method:

xn+1 = xn + ∆tv(xn) +
√

∆tσ(xn)ξn +
1

2
σ(xn)σ

(1)(xn)(∆tξ2
n −∆t),

where ξn ∼ N (0, 1).
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Introduction Stochastic Differential Equations

Weak and Strong Convergence

Weak convergence: We look at |E(φ(x(n∆t)))− E(φ(xn))|.
Strong convergence: We look at E|x(n∆t)− xn|.
In general the weak and strong order of convergence of a numerical
method NEEDS NOT to be the same!!!
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Introduction Stochastic Differential Equations

Statement of the Problem

Let x(t) satisfy the following SDE:

dx = v1(x)dt + σ1(x)dWt ,

and xn be its numerical approximation at T = n∆t by a weak p-order
method i.e

|E(φ(x(T )))− E(φ(xn))| = O(∆tp), ∀φ ∈ C∞.

We want to develop a procedure that allows us to evaluate the properties
of our weak numerical scheme.

K. C. Zygalakis (University of Oxford) Modified Equation for SDEs 10 / 38



Introduction Stochastic Differential Equations

Statement of the Problem

Let x(t) satisfy the following SDE:

dx = v1(x)dt + σ1(x)dWt ,

and xn be its numerical approximation at T = n∆t by a weak p-order
method i.e

|E(φ(x(T )))− E(φ(xn))| = O(∆tp), ∀φ ∈ C∞.

We want to develop a procedure that allows us to evaluate the properties
of our weak numerical scheme.

K. C. Zygalakis (University of Oxford) Modified Equation for SDEs 10 / 38



Introduction Stochastic Differential Equations

First Modified Equation

We want to find a modified SDE of the form (i.e., find v2 and σ2)

dx̃ = [v1(x̃) + ∆tv2(x̃)] + [σ1(x̃) + ∆tσ2(x̃)] dWt ,

for which

|E(φ(x̃(T )))− E(φ(xn))| = O(∆tp+1), ∀φ ∈ C∞.

For the rest of the talk we concentrate in the case where p = 1.
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Main Idea

Generators for ODEs and SDEs

ODE:

dx = h(x)dt,

Lu := h(x) · ∇xu.

SDE:

dx = h(x)dt + σ(x)dWt ,

Lu := h(x) · ∇xu +
1

2
σ(x)σT (x) : ∇x∇xu.
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Main Idea

Backward Kolmogorov Equation

∂u

∂t
= Lu,

u(x , 0) = φ(x).

Then
u(x , t) = E(φ(x(t))|x(0) = x).

K. C. Zygalakis (University of Oxford) Modified Equation for SDEs 13 / 38



Main Idea

Stochastic B-series

By integrating over time the backward Kolmogorov Equation and taking a
Taylor expansion of u(x , s) around s = 0, we obtain, (assuming
appropriate smoothness of the drift and diffusion terms)

u(x ,∆t)− φ(x) =
∞∑

k=0

∆tk+1

(k + 1)!
Lk+1φ(x).

Note that in the case where φ(x) = x , σ(x) = 0, this expansion
correspond to the B-series expansion of the ODE

dx = v1(x)dt.
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Main Idea

Local Error/Global Error

A weak first order numerical method has the following expansion

unum(x ,∆t)− φ(x) = ∆tLφ(x) + ∆t2Leφ(x) +O(∆t3),

and so

u(x ,∆t)− unum(x ,∆t) = ∆t2

(
1

2
L2φ(x)− Leφ(x)

)
, Local Error

which implies that

u(x ,T )− unum(x ,T ) = O(∆t). Global Error
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Main Idea

Generator of the Modified Equation

Remember that the 1-st modified equation is of the form

dx̃ = [v1(x̃) + ∆tv2(x̃)] + [σ1(x̃) + ∆tσ2(x̃)] dWt .

Its generator L can be written as

L = L0 + ∆tL1 + ∆t2L2,

where L0 is the generator of the original SDE and

L1φ := v2(x)
dφ

dx
+ σ1(x)σ2(x)

d2φ

dx2
.
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Main Idea

Main Equation

If we now subtract the Taylor expansion of the numerical method from the
stochastic B-series of the modified equation we see that in order for the
local error to be O(∆t3) we need

L1φ = Leφ−
1

2
L2

0φ, ∀φ ∈ C∞.
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Different Numerical Methods

Euler-Maryama Method

In the case of Euler-Maryama method in the case of multiplicative noise it
turns out that a modified equation does not exist since

L1φ 6= · · ·+ σ3
1(x)

2
σ

(1)
1 (x)φ(3)(x).

as L1 is a second order partial differential operator!!!
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Different Numerical Methods

Milstein Method

v2(x) = −1

2

(
v1(x)v

(1)
1 (x) +

σ2
1(x)

2
v

(2)
1 (x)

)
,

σ2(x) = −1

2

(
σ1(x)v

(1)
1 (x) + v1(x)σ

(1)
1 (x) +

σ2
1(x)

2
σ

(2)
1 (x)

)
.
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Applications SDEs Driven by Multiplicative Noise

Geometric Brownian motion

dx = µxdt + σxdWt ,

dX̃ =

[(
µ− ∆t

2
µ2

)
X̃

]
dt + σX̃ (1−∆tµ) dWt .
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Applications ∞ Modified equations

Linear SDEs with additive noise

dx = Axdt + ΣdWt .

Numerical Approximation:

x(∆t) = A(∆t)x + f (∆t, ω).

Example (Euler-Maryama):

A(∆t) = (I + ∆tA),

f (∆t, ω) = Σ
√

∆tξ.
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Applications ∞ Modified equations

∞ Modified Equation and its coefficients

dx = Ãxdt + Σ̃dWt ,

Ã =
log(A(∆t))

∆t
,

eÃ∆tΣ̃Σ̃T eÃT ∆t − Σ̃Σ̃T = ÃJ + JÃT ,

where
J = E(ff T ).

K. C. Zygalakis (University of Oxford) Modified Equation for SDEs 22 / 38



Applications ∞ Modified equations

Connection with ODEs

Let M(t) = E(x(t)), then

dM

dt
= AM.

The numerical method for SDE becomes this numerical method for the
previous ODE

Mn+1 = A(∆t)Mn,

which from ODE theory has this ∞-modified equation

dM̃

dt
= ÃM̃.
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Applications ∞ Modified equations

Orstein Uhlenbeck Process

dx = −γxdt + σdWt .

Forward Euler:

Ã =
log(1− γ∆t)

∆t
,

Σ̃ = σ

√
2 log(1− γ∆t)

(1− γ∆t)2 − 1
.

Backward Euler:

Ã = − log(1 + γ∆t)

∆t
,

Σ̃ = σ

√
2 log(1 + γ∆t)

1− (1 + γ∆t)−2
.
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Applications ∞ Modified equations

Invariant Measure

lim
t→∞

E(x2(t)) =
σ2

2γ − γ2∆t
, Forward Euler

lim
t→∞

E(x2(t)) =
σ2(1 + γ∆t)2

2γ + γ2∆t
, Backward Euler.
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Applications Long Time Behaviour and Homogenization

Passive Tracers, Effective Diffusivity

dx = v(x)dt + σdWt ,

where v(x) is a periodic function. It is possible to show using
homogenization that

lim
t→∞

E(x(t)⊗ x(t))

2t
= K.

We will refer to K as the effective diffusivity matrix
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Applications Long Time Behaviour and Homogenization

Velocity Field of Interest

Example

We are interested in the following 2-dimensional incompressible velocity
field

v(x) = ∇⊥Ψ(x), where Ψ(x) = sin x1 sin x2

Result

In this case it is known that K = D(σ)I2, where D(σ) ∈ R and that the
following result is true

D(σ) ∼ σ, σ � 1
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Applications Long Time Behaviour and Homogenization

Key Property of the Velocity Field

Our velocity field v(x) can be written as

v(x) =

(
−1/2
+1/2

)
sin(x1 + x2) +

(
−1/2
−1/2

)
sin(x1 − x2),

=
2∑

j=1

djvj

(
〈ej , x〉

)
,

where ej , dj ∈ R2 with the property

〈ej , dj〉 = 0.

This is a key property for the construction of our method which is a stochastic
extension of a splitting method proposed by Quispel 2003.
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Applications Long Time Behaviour and Homogenization

Description of the Method:

The method in the case of passive tracers involves these 3 steps:

Step 1: Solve ẋ1 = d1v1

(
〈e1, x1〉

)
,

Step 2: Solve ẋ2 = d2v2

(
〈e2, x2〉

)
,

Step 3: Solve ẋ3 = σβ̇1.
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Applications Long Time Behaviour and Homogenization

The Deterministic Case

Splitting method for σ = 0. Euler method for σ = 0.
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Applications Long Time Behaviour and Homogenization

The Case σ � 1

!15 !10 !5 0 5 10 15 20 25
!30

!20

!10

0

10

20

30

x1
x 2

Splitting method for σ = 10−2. Euler method for σ = 10−2.

K. C. Zygalakis (University of Oxford) Modified Equation for SDEs 31 / 38



Applications Long Time Behaviour and Homogenization

Calculating Effective Diffusivities
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Applications Long Time Behaviour and Homogenization

Mean Hamiltonian

We apply Itô ’s formula to H = Ψ we obtain

dΨ

dt
= −σ2Ψ + M.T

which implies that the mean Hamiltonian decays like e−σ2t
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Applications Long Time Behaviour and Homogenization

Numerical calculation of the mean Hamiltonian with the
two methods
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Figure: Mean value of the Hamiltonian as a function of time, for
∆t = 10−1, σ = 10−2.
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Applications Long Time Behaviour and Homogenization

Modified Equations for the Euler Method

dx =

(
v(x)− ∆t

2
(∇v(x))v(x)− σ2∆t

4
∆v(x)

)
dt

+ σ

(
1− ∆t

2
∇vT (x)

)
dWt .

dΨ

dt
= −∆t

2
(cos2 x1 + cos2 x2)Ψ− σ2Ψ(1 + ∆t cos x1 cos x2)

+
σ2∆t2

4
(cos2 x1 cos2 x2Ψ−Ψ3) + M∆t .
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Summary

Conclusions

1 It is not always possible to write down a modified Itô SDE for a given
numerical method.

2 In the case of linear SDEs with additive noise it is possible to write
down an ∞-modified equation that the numerical method satisfies
exactly in the weak sense.

3 It is possible to generalize ideas from the backward error analysis of
ODEs to SDEs.
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Summary

Future work

1 Find modified equations for numerical methods with respect to strong
convergence.

2 Give a rigorous explanation for failing to find a modified SDE for the
Euler method in case of multiplicative noise.

3 Use modified equations to characterize the invariant measures
approximated by different numerical schemes.

4 Use modified equations as a tool for constructing higher order
methods.
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Summary
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