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Abstracts of Contributions

Form-factors for strongly coupled boson system, plane partitions and random
walks

N. M. Bogoliubov?, J. Timonen®

a. Saint Petersburg Department of Steklov Mathematical Institute of Russian Academy of
Sciences, Fontanka 27, 191023 St-Petersburg, Russia

b. Department of Physics, P. O. Box 35, FIN-40014 University of Jyvaskyld, Finland

The exactly solvable model of strongly coupled bosons, the so called “phase model”,
introduced by R.K. Bullough in the paper (N.M. Bogoliubov, R.K. Bullough, and J.
Timonen, “Critical behavior for correlated strongly coupled boson systems in 1+1 di-
mensions”, Phys. Rev. Lett., vol. 25, 3933 (1994)) is considered. The form-factors for
the model are calculated explicitly and represented as determinants. The relation of the
model with the problems of the contemporary combinatorics is discussed. It is shown
that the natural model describing the behavior of the friendly walkers, the ones that can
share the same lattice sites, is the “phase model”. The expression for the number of all
admissible nests of lattice paths made by the fixed number of the friendly walkers for
the certain number of steps is obtained. The connection between the form-factors and
boxed plane partitions - the three dimensional Young diagrams placed into a box of a
finite size is established.

Robin Bullough and the crystallographic phase problem — a tale of scientific
inheritance

P. A. Bullough®

a. a. Krebs Institute for Biomolecular Research, University of Sheffield, Sheffield S10 2TN,
United Kingdom

| will talk about my father’s life outside mathematics and also the inspiration he gave
me for a career in research. | will discuss my father's early work as a Ph.D. student in
attempting to solve the ‘phase problem’ in X-ray crystallography. Remarkably, and in
more ways than one, this work connects with my own research and | will discuss the
importance of the ‘phase problem’ in biology. | will show how | have used diffraction
techniques (both X-ray and electron) to reveal the mode of action of a number of
molecules found in different biological systems.

References

[1] R.K. Bullough and D.W.J. Cruickshank: Comments on probability distributions for
interatomic vectors and atomic coordinates. Acta Cryst 7, 598 (1954).

[2] R.K. Bullough and D.W.J. Cruickshank: Some relations between structure factors.
Acta Cryst 8, 29 (1955).

[3] P. A. Bullough, F. M. Hughson, J. J. Skehel and D. C. Wiley: The Structure of
Influenza Haemagglutinin at the pH of Membrane Fusion. Nature 371 37-43 (1994).
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[4] S.J. Jamieson, P. Wang, P. Qian, J.Y. Kirkland, M.J. Conroy, C. N. Hunter and
P.A. Bullough: Projection structure of the photosynthetic reaction centre-antenna
complex of Rhodospirillum rubrum at 8.5 A resolution. EMBO J. 15 3927-3935
(2002).

[5] S. Bahatyrova, R.N. Frese, C.A. Siebert, J.D. Olsen, K.O. van der Werf, R. van
Grondelle, R.A. Niederman, P.A. Bullough, C. Otto, C.N. Hunter: The native
architecture of a photosynthetic membrane. Nature 430 1058-1062 (2004).

[6] M.J. Conroy, A. Durand, D. Lupo, X.-D. Li, P.A. Bullough, F.K. Winkler and M.
Merrick: The crystal structure of the Escherichia coli AmtB-GInK complex reveals
how GInK regulates the ammonia channel. Proc. Natl. Acad. Sci. U.S.A. 104 1213-
1218 (2007).

[7] Ball, D.A., Taylor, R., Todd, S.J., Redmond, C., Couture-Tosi, E., Sylvestre, P.,
Moir, M. and Bullough, P.A.: Structure of the exosporium and sublayers of spores

of the Bacillus cereus family revealed by electron crystallography. Mol. Microbiol.
68 947-958 (2008).

Isochronous dynamical systems and the arrow of time

F. Calogero®

a. Dipartimento di Fisica, Universita di Roma La Sapienza, Istituto Nazionale di Fisica
Nucleare, Sezione di Roma

A vector-valued time-dependent function is called isochronous if all its compo-
nents are periodic in time with the same fixed period T. A dynamical system is called
isochronous if its generic solution is isochronous: periodic in all its degrees of freedom
with a fixed period T independent of the initial data. It will be shown how essentially
any (autonomous) dynamical system can be modified or extended into another (also au-
tonomous) dynamical system which is isochronous with an (arbitrarily !) assigned period
T, and which moreover behaves, over time periods very short with respect to T, essen-
tially as the original (unmodified) system—up to a constant time rescaling. This can
also be done for a large class of Hamiltonian systems, including the Hamiltonian describ-
ing the most general many-body problem (provided it is, overall, translation-invariant).
Some implications of this fact for statistical mechanics and thermodynamics will be men-
tioned, and for the distinction among integrable and nonintegrable dynamical systems
(all isochronous systems are integrable, in fact maximally superintegrable). These find-
ings have all been obtained together with F. Leyvraz: some of them are reported in
my monograph entitled Isochronous systems (Oxford University Press, 2008), others are
more recent.

Solitons without Inverse Scattering

P. J. Caudrey”



a. (Retired) School of Mathematics, Alan Turing Building, University of Manchester, Upper
Brook Street, Manchester M13 9EP, UK

Who remembers “Hirota’s method”? In the early days of solitons, although the
Korteweg-de Vries equation had been solved by the “Inverse Scattering Method” [1]
most solutions to integrable non-linear equations were found by simpler more direct
methods. Outstanding among these was a method due to mainly to Hirota [2, 3] [4]
which involved casting the equation into a “bi-linear form” and then applying intelligent
guesswork. In this talk | shall take a journey down memory lane looking again at this
method.

References

[1] C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura: Method for solving the
KdV equation. Phys. Rev. Lett. 19, 1095-1097 (1967).

[2] Ryogo Hirota: Exact Solution of the KdV equation for Multiple Collision of Solitons.
J. Phys. Soc. Japan 27, 1192-194 (1974).

[3] Ryogo Hirota: Exact Solution of the Sine-Gordon Equation for Multiple Collision
of Solitons. Phys. Rev. Lett. 33, 1495-1463 (1972).

[4] P.J. Caudrey, J.C. Eilbeck, J.D. Gibbon and R.K. Bullough: Multiple soliton and
bisoliton bound state solutions of the sine-Gordon equation and related equations
in nonlinear optics. J. Phys. A: Math. Nucl. Gen. 6, L112-L115 (1973).

Quantum Mechanical and Relativistic Scattering by Short-Range Potentials

P. L. Christiansen®

a. Informatics and Mathematical Modelling and Department of Physics,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Scattering by short-range potentials in the Schrodinger equation and the Dirac equa-
tion is discussed. The potentials are represented by Dirac’s delta function and its deriva-
tives. Regularisation is used and uniqueness and non-uniqueness of the procedure is
discussed. Recent results for a fourth order equation describing vibrations on a beam
will be included.

Earlier publications

[1] P. L. Christiansen, H. C. Arnbak, A. V. Zolotaryuk, V. N. Ermakov, and Y. B. Gai-
didei: On the existence of resonances in the transmission probaility for interactions arising
from derivatives of Dirac's delta function, J. Phys. A: Math. Gen. 36 (2003) 7589-7600.

[2] A. V. Zolotaryuk, P. L. Christiansen, and S. V. lermakova: Scattering properties of
point dipole interactions, J. Phys. A: Math. Gen. 39 (2006) 9329-9338.



[3] A. V. Zolotaryuk, P. L. Christiansen, and S. V. lermakova: Resonant tunnelling
through short-range singular potentials, J. Phys. A: Math. Gen. 40 (2007) 5443-5457.

Generalising the Weierstrass o function to curves of higher genus

J. C. Eilbeck”
a. Heriot-Watt University and the Maxwell Institute

Abstract: The theory of elliptic functions connected to a curve of genus one can be
developed in a number of ways. One of these is through the Weierstrass @ function, which
provides the travelling wave solution of the KdV equation and many other integrable
PDEs. Generalising this to curves of higher genus, we get periodic solutions of the
KdV hierachy, Boussinesq, KP, etc., together with interesting addition theorems. | will
concentrate on recent developments for trigonal and tetragonal curves, but also mention
some new(?) results for the elliptic case.

References

[1] J. C. Eilbeck, V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato: Abelian
Functions for Trigonal Curves of Genus Three, International Mathematics Research
Notices 2007, Art.ID rnm140 (38 pages) (2007).

[2] S. Baldwin, J. C. Eilbeck, J. Gibbons, Y. Onishi: Abelian Functions for Cyclic
Trigonal Curves of Genus Four, J. Geom. Phys., 58, 450-467, 2008.

[3] M. England and J. C. Eilbeck: Abelian functions associated with a cyclic tetragonal
curve of genus six, J. Phys. A: Math. Theor. 42 (2009) 095210.

[4] J. C. Eilbeck, S. Matsutani, and Y. Onishi: Some addition formulae for Abelian
functions for elliptic and hyperelliptic curves of cyclotomic type, submitted for pub-
lication, 2008, http://arxiv.org/abs/0803.3899 .

Cluster Mutation-Periodic Quivers and Associated Laurent Sequences

A. P. Fordy”
a. University of Leeds, Leeds, UK

We consider quivers/skew-symmetric matrices under the action of mutation (in the
cluster algebra sense). We classify those which are isomorphic to their own mutation
via a cycle permuting all the vertices, and give families of quivers which have higher
periodicity. The periodicity means that sequences given by recurrence relations arise in
a natural way from the associated cluster algebras. We present a number of interesting
new families of nonlinear recurrences, necessarily with the Laurent property, of both the
real line and the plane, containing integrable maps as special cases. In particular, we
show that some of these recurrences can be linearised and, with certain initial conditions,



give integer sequences which contain all solutions of some particular Pell equations. We
extend our construction to include recurrences with parameters, giving an explanation
of some observations made by Gale. Finally, we point out a connection between quivers
which arise in our classification and those arising in the context of quiver gauge theories.
Based on arxiv.0904.0200

Cavity QED: Theory, experiment, & the cat that got the cream.

B. M. Garraway”

a. Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1
9QH, UK

The basic interaction of light with matter does not reveal its quantum nature unless
we take care in what we observe and how we observe it. In the fields of cavity QED
and Quantum Optics the use of high-Q resonant cavities for microwaves, and light,
allows us to see such quantum effects. In this talk there will be an overview of theory
and experiment concerned with such cavities interacting with small numbers of atoms.
Schrodinger’s cat will make an appearance. There will also be some new results on the
old issue of the spectrum of light [I]: that is, the light from cavity-atom systems with
multiple excitations [2] and dynamic reservoir structures [3].

References
[1] B.R. Mollow: Phys. Rev. 188, 1969 (1969).
[2] B.J. Dalton and B.M. Garraway: J. Mod. Opt. 54, 2049 (2007).

[3] L.LE. Linington and B.M. Garraway: J. Phys. B 39, 3383 (2006); Phys. Rev. A 77,
033831 (2008).

Extreme events in solutions of the 3D Navier-Stokes equations and in Primitive
Climate models

J. D. Gibbon®
a. Dept. of Mathematics, Imperial College London, London SW7 2AZ, UK

Mathematicians tend to look at turbulence through the eyes of the 3D Navier-Stokes
(NS) equations. Their technical tools (norms) inevitably involve volume integrals which,
by their nature, average out variations in the vorticity and strain associated with inter-
mittency. Thus the subtlety of the vortical spatial structure is lost. Colour graphics
vividly demonstrate that tube/sheet ‘thin sets’ tend to dominate the vortical landscape,
yet mathematically it is very hard to explain the origin of these by rigorous methods of
analysis. In this talk an attempt is made to (i) make a partial analytical explanation
for this pheneomenon; (ii) to see if these ideas can also shed some light on the sudden
appearance and disappearance of locally intense fronts in solutions of the viscous hydro-
static & non-hydrostatic primitive equations (HPE/NPE) that form the basis of most
numerical climate models.
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Non-Linear Optical Extinction Theorem

S. Hassan®

a. University of Bahrain, College of Science, Mathematics Department, PO Box 32038,
Kingdom of Bahrain, (shoukryhassan@hotmail.com)

Starting from the model Bloch-Maxwell equations for two-level atoms forming an
extended system of Fabry-Perot cavity configuration, the fundamental Optical Extinc-
tion Theorem due to Ewald-Oseen (1915,1916) is generalized to the non-linear regime.
Generalized form of the Lorentz-Lorenz dispersion relation for the refractive index (m)
is derived. Within the context of optical multistability phenomenon, the characteristic
input-output filed relation is non-linearly dependent on (m). A self-consistent numerical
scheme shows that the multistable behaviour is exhibited for dense medium data.

References

[1] O. W. Oseen: Ann. Phys. (Leipzig) 48 , 1 (1915); P.P. Ewald: Ann. Phys. (Leipzig)
49, 115 (1916)

[2] S. S. Hassan and R. K. Bullough, in Optical Bistability, eds: C.M. Bowden, M.
Ciftan and H. Robl (Plenum, NY, 1981) pp. 367-404.

[3] R. K. Bullough and S. S. Hassan: SPIE Proc.369, 257 (1982).

[4] S.S. Hassan, R. B. Bullough and H.A. Batarfi, in Studies in Classical and Quantum
Nonlinear Optics, ed: O. Keller (Nova Sci. Pub., NY, 1995) pp. 609-623.

[5] S.S. Hassan, R. K. Bullough and R. Saunders: Int. J. Theor. Phys., Group Theory
and Nonlinear Optics (2009) (in the press).

[6] S. S. Hassan, R. K. Bullough, M. N. lbrahim, R. Saunders, T. Jarad and N. N.
Nayak: J. Theor. Phys., Group Theory and Nonlinear Optics (2009) (in the press).

Landau-Lifshitz—Gilbert (LLG) Equation: Integrability, Chaos, Patterns and All
That

M. Lakshmanan®

a. Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchi-
rappalli, 620024, India

The world of Landau-Lifshitz—Gilbert (LLG) equation is quite large and represents
many physically interesting spin and other physical systems. It encompasses very many
nonlinear evolution equations, both integrable and nonintegrable. It admits a large
class of nonlinear excitations, depending on the nature of the interactions, additional
forces, anisotropy and damping. These include spin waves (magnons), elliptic func-
tion waves, solitary waves and solitons, vortices, instantons, axisymmetric solutions,
dromions, chaotic structures, various spatiotemporal patterns and their switching. Many
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special cases of the LLG equation have close connection with differential geometric as-
pects and group theoretical notions. In recent times, it has drawn renewed attention
as the basic model equation in an extended form in the field of spintronics, specifically
in connection with spin transfer torque effect in nanoferromagnets. Particularly, when
a spin polarized current passes through layers of ferromagnetic films of nanometer level
thickness interspersed with conducting nonferromagnetic spacers, it can give rise to mag-
netic switching normally produced by external applied magnetic fields, leading to novel
technological MRAM devices. The phenomenon is essentially represented by an extended
LLG equation. Robin Bullough was a great admirer of the underlying physics and math-
ematics of the LLG equation and | will be reviewing some of the recent developments
on LLG equation as a tribute to him.

References

[1] L. D. Landau and E. Lifshitz: Phys. Z. Soviet Union 8, 153 (1935).

[2] T. L. Gilbert: Phys. Rev. 100, 1243 (1955): IEEE Trans. Magnetics 40, 3443
(2004).

[3] M. Lakshmanan and R. K. Bullough: Phys Letts. A 80, 287 (1980).
[4] M. Lakshmanan and A. Saxena: Physica D 237, 885 (2008).
[5] J. Z . Sun: IBM J. Res. & Rev. 50, 81 (2006).

[6] S. Murugesh and M. Lakshamanan: Chaos, Solitons & Fractals (2009) to appear

Integrable models in nonlinear optics and soliton solutions

A. Degasperis ¢, S. Lombardo®

a. Dipartimento di Fisica, Universita di Roma La Sapienza, Istituto Nazionale di Fisica
Nucleare, Sezione di Roma

b. School of Mathematics, Alan Turing Building, University of Manchester, Upper Brook
Street, Manchester M13 9EP, UK

Systems of PDEs which model nonlinear wave propagation in optics play a particularly
interesting role if they are both relevant to experiments and integrable. The second
property (integrability) gives these models a very special status because of our capability
of solving important problems such as, among others, construction of analytic soliton
solutions, soliton interactions, stability, asymptotic states, conservation laws, parametric
control.

Notable examples of wave equations in this class are multi component Schrodinger
type systems and resonant interaction models; in particular, in this talk | will consider
a systems of multi component wave equations in 141 dimensions, introduced first by
Calogero and Degasperis [1], [2]. Soliton solutions of these equations are constructed
by specializing the Dressing Darboux Transformation to deal with different boundary
conditions which describe all-bright as well as mixed bright—dark and all-dark pulses

12



[3], [4]. Contact with nonlinear optics is made by considering the simplest model of
boomeronic equation, namely the well-known three wave resonant interaction system

[51-{7].

References

[1] Calogero F and Degasperis A: New integrable equations of nonlinear Schrédinger
type, Studies Appl. Math. 113, 91-137, (2004)

[2] Calogero F and Degasperis A: New integrable PDEs of boomeronic type, J. Phys.
A: Math. Gen.39, 8349-8376, (2006)

[3] Degasperis A, Lombardo S: Multicomponent integrable wave equations I. Darboux—
Dressing Transformation, J. Phys. A: Math. Theor. 40, 961-977, (2007)

[4] Degasperis A, Lombardo S: Multicomponent integrable wave equations Il. Soliton
solutions (in preparation).

[5] Degasperis A, Conforti M, Baronio F and Wabnitz S: Stable Control of Pulse Speed
in Parametric Three-Wave Solitons, Phys.Rev.Lett., 97, 093901, 1-4, (2006)

[6] Conforti M, Baronio F, Degasperis A and Wabnitz S: Inelastic scattering and in-
teractions of three-wave parametric solitons, Phys, Rev. E, 74, 065602(R),1-4,
(2006)

[7] Conforti M, Baronio F, Degasperis A and Wabnitz S: Parametric frequency con-
version of short optical pulses controlled by a CW background, Optics Express 15,
12246-12251, (2007)

Slow-light solitons

A. R. Bishop?, A. V. Rybin® |. P. Vadeiko °

a. Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos, New Mexico 87545, USA

b. Saint Petersburg State University of Information Technologies, Mechanics and Optics,
197101 Saint Petersburg, Russian Federation

c. McGill University 3600 rue University Montreal, QC, Canada H3A 2T8

In the framework of the nonlinear A-model we investigate propagation of solitons in
atomic vapors and Bose-Einstein condensates. We show how the complicated nonlinear
interplay between fast solitons and slow-light solitons in the A-type media points to
the possibility to create optical gates and, thus, to control the optical transparency of
the A-type media. We provide an exact analytic description of decelerating, stopping
and re-accelerating of slow-light solitons in atomic media in the nonadiabatic regime.
Dynamical control over slow-light solitons is realized via a controlling field generated by
an auxiliary laser. For a rather general time dependence of the field; we find the dynamics
of the slow-light soliton inside the medium. We provide an analytical description for
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the nonlinear dependence of the velocity of the signal on the controlling field. If the
background field is turned off at some moment of time, the signal stops. We find the
location and shape of the spatially localized memory bit imprinted into the medium. We
discuss physically interesting features of our solution, which are in a good agreement
with recent experiments.

We have applied the transformation of the slow light equations to Liouville theory
that we also have developed, to study the influence of relaxation on the soliton dynamics.
We solved the problem of the soliton dynamics in the presence of relaxation and found
that the spontaneous emission from the upper atomic level is strongly suppressed. Our
solution proves that the spatial shape of the soliton is well preserved even if the relaxation
time is much shorter than the soliton time length. This fact is of great importance for
applications of the slow-light soliton concept in optical information processing. We also
demonstrate that the relaxation plays a role of resistance to the soliton motion and slows
the soliton down even if the controlling field is constant.

References

[1] A.V. Rybin, I.P. Vadeiko, and A.R. Bishop: Slow-light solitons, J. Phys. A: Math.
Theor. 40, F135-F141 (2007).

V. Rybin, I.P. Vadeiko, and A.R. Bishop: Slow-light solitons: Influence of relax-
2| A.V. Rybin, |.P. Vadeik d A.R. Bish Slow-light soli Infl f rel.
ation, Europhysics Letters, 81, 40009 (2008).

[3] A.V. Rybin, I.P. Vadeiko, and A.R. Bishop: Theory of slow-light solitons, Phys.
Rev. E, 72, 026613 (2005).

[4] A.V. Rybin, I.P. Vadeiko, and A.R. Bishop: Non-adiabatic manipulation of slow-
light solitons, New Journal of Physics, 7, 146 (2005).

[5] A.V.Rybin, I.P. Vadeiko, and A.R. Bishop: Driving slow-light solitons by controlling
laser field, J. Phys. A: Math. and General, 38, L357 (2005) .

[6] A.V. Rybin, I.P. Vadeiko, and A.R. Bishop: Stopping a slow-light soliton: an exact
solution, J. Phys. A: Math. and General, 38, L177 (2005) .

[7] A.V.Rybin and |.P. Vadeiko: Manipulation of Optical Solitons in Bose-Einstein con-
densates, Journal of Optics B: Quantum and Semiclassical Optics, 6, 416 (2004).

Exactly and Quasi-Exactly Solvable “Discrete” Quantum Mechanics

R. Sasaki®

a. Yukawa Institute for Theoretical Physics, Kyoto University

Exactly and quasi-exactly solvable “discrete” Quantum Mechanics (QM) were con-
structed by Odake and myself [I]. In “discrete” QM, the momentum operator p = —iho
appears in exponentiated forms e, which generate shifts of a wavefunction v (x):
et Py(z) = (x Fiy) (v € R or /—1R), giving rise to two different versions of ‘dis-
crete’ QM. The Schrodinger equation becomes a difference equation. For real v, i.e. the
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pure imaginary shifts, the coordinate x takes a continuous range, whereas for the real
shifts, the coordinate z is on a lattice with the uniform interval |y|. All the other axioms
of quantum mechanics are well preserved. In the exactly solvable QM, on top of the
complete set of eigenvalues and eigenfunctions, the Heisenberg operator solutions are
exactly obtained; the latter indicating the underlying dynamical symmetry algebras, in-
cluding the g-oscillator algebra [2]. The eigenfunctions consist of various hypergeometric
orthogonal polynomials, e.g. the Askey-Wilson polynomials. They describe the classical
equilibrium points of exactly solvable multi-particle dynamics [3] and also provide exact
solutions of birth and death processes, a typical example of stationary Markov chains
[4]. In quasi-exactly solvable QM, constructed with one or two compensation terms [5],
a finite number of eigenvalues and eigenfunctions are obtained exactly.
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From soliton statistical mechanics to crumpling of stiff membranes

Jussi Timonen“
a. Department of Physics, FI-40014 University of Jyvaskyla, Finland

Some recollections will be presented from the early years of soliton statistical me-
chanics. It will be explained how formulation of the partition function of the sine Gordon
and sinh Gordon systems in terms of the Oaction angle variablesO appeared to solve the
Obreather problemO.

The rest of the talk will be devoted to a completely different problem, to new results
[1,2] on folding and crumpling of stiff membranes, or thin sheets of material with nonzero
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bending stiffness. Self-similarity of the ridge patterns, fractal dimension of the crumpled
configurations, and effects of plasticity on these properties, will be discussed. Effects of
self-adhesion will be touched upon.
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From Berezinians to formal characteristic functions of maps of algebras

T. Voronov?, H. Khudaverdian®

a. School of Mathematics, University of Manchester, Manchester, M60 1QD, United King-
dom

Consider two algebras (commutative, associative, with unit) A and B, and a linear
map ¢ from A to B. For example, A can be the algebra of functions on some space X
and B be the field of real numbers. Which interesting classes of linear maps of algebras
do exist? Obviously, there is a class consisting of the algebra homomorphisms. Geomet-
rically algebra homomorphisms correspond to points of a space or to maps between two
spaces. Are there any other good classes? Using a technique motivated by mathematical
physics we introduce the notion of a characteristic function for a linear map ¢, which is
a formal power series in an auxiliary variable:

R(p,a,2) = e#lox(11)

Its functional properties reflect algebraic properties of the linear map ¢. For ex-
ample, the algebra homomorphisms correspond to the linear binomials 1 + p(a)z. If
the characteristic function is a polynomial of degree n, then the map of algebras is a
so-called “n-homomorphism”. Examples of n-homomorphisms date back to Frobenius’s
works on matrix representations. Recently this theory was revived by Buchstaber and
Rees motivated by studies of multi-valued groups. Using our approach we can very easily
recover their results, in particular, their non-trivial generalization of the famous Gelfand—
Kolmogoroff theorem. Moreover, it is possible to go further by considering rational
characteristic functions. Consideration of rational characteristic functions is motivated
by supergeometry, in particular, the theory of Berezinians (superdeterminants). On this
way we obtain classes of maps satisfying very interesting identities. We can guess that
such objects may be useful in integrable systems.
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