
Symmetries and classification of integrable

nonlinear PDEs

A.V. Mikhailov

University of Leeds

UK-Japan Winter School: “Integrable Systems & Symmetries”

University of Manchester, 7-10 January 2010



How do we test whether a given system is integrable and if so, how can

we integrate it?

What are the integrability conditions?

Can we describe all integrable systems of a certain type (classification

problem)?

Can we give a complete picture of all possible integrable systems of all

orders (global classification)?

To answer these challenging questions we ought to decide what inte-

grability is.

To classify equations we have to define the equivalence relation, and ide-

ally give a method to check whether two given equations are equivalent

or not.



Symmetry approach to the problem of Integrability

• Elements of differential algebra and jet calculus.

• Symmetries and local conservation laws

• Formal series, Adler’s Theorem

• A concept of formal recursion operator and formal simplectic oper-
ator.

• Integrability conditions.

• The problem of classification of Integrable Equations.

• Some results and generalizatios.



PDEs as dynamical systems. Dynamical variables.

Differential field: Denote by F = F(t, x, u;D) the field of ”all” smooth

complex functions of a finite number of independent jet variables

t , x, u0 = u, u1 = ux, u2 = uxx, . . . , (1)

equipped with the derivation D : F 7→ F

D =
∂

∂x
+ u1

∂

∂u0
+ u2

∂

∂u1
+ u3

∂

∂u2
+ · · · . (2)

which represents the total derivative with respect to x (the chain rule).

We assume that C ⊂ F.

Elements of F we call local functions.



In this notations a scalar evolutionary equation

ut = F (t, x, u, ux, . . . , ∂
n
xu) . (3)

for a dependent variable u = u(x, t) and independent variables t, x takes

the form

ut = F (t, x, u, u1, . . . , un) , F ∈ F . (4)

Evolution partial differential equation (4) defines another derivation Dt
of the field F

Dt =
∂

∂t
+ F0

∂

∂u0
+ F1

∂

∂u1
+ F2

∂

∂u2
+ · · · , Fk ∈ F

where

F0 = F (t, x, u, ... , un), F1 = D(F0), ... Fn = Dn(F0), ... .

The vector field Dt represents the total derivative with respect to time

t due to evolutionary equation (4). Derivations Dt and D commute:

[Dt, D] =
∑
s=0

(
Dt(us+1)−D(Fs)

) ∂

∂us
=

∑
s=0

(
Fs+1 −D(Fs)

) ∂

∂us
= 0 .



Evolutionary equation (4) can be represented by two compatible infinite

dimensional dynamical systems

D(us) = us+1 , Dt(us) = Fs , s = 0,1,2, ... . (5)

Variables u, u1, u2, . . . we call dynamical variables.

Example: For the Korteweg de Vries equation

ut = uxxx + 6uux (6)

function F0 = u3 + 6uu1 and first few equations of the system (5) are

of the form

D(u) = u1 , Dt(u) = u3 + 6uu1

D(u1) = u2 , Dt(u1) = u4 + 6uu2 + 6u2
1

D(u2) = u3 , Dt(u2) = u5 + 6uu3 + 18u1u2

· · ·



We say that a derivations of the field F

DG = G0
∂

∂u0
+G1

∂

∂u1
+G2

∂

∂u2
+ · · · , Gk ∈ F

is an evolutionary derivation, if [D,DG] = 0. It follows from the condition

[D,DG] = 0 that Gk = Dk(G0).

With any evolutionary equation (where τ is a new independent variable)

uτ = G(t, x, u, u1, . . . , um), G ∈ F (7)

we associate the corresponding evolutionary derivaion

DG = G
∂

∂u0
+D(G)

∂

∂u1
+D2(G)

∂

∂u2
+ · · · .

We note that D = ∂
∂x +Du1, Dt = ∂

∂t +DF .



All evolutionary derivations form a Lie algebra with respect to the stan-

dard commutator

DK = DG ◦DH −DH ◦DG = [DG, DH] (8)

of vector fields.

The generator K of the commutator is given by

K = DG(H)−DH(G). (9)

It defines a Lie bracket [G,H] = DG(H)−DH(G) on the differential field

F. The field F equiped with this Lie bracket is an infinite dimensional

Lie algebra.



Fréchet derivative and Euler’s operator

Definition 1. For any element a ∈ F the Fréchet derivative is defined as

a linear differential operator of the form

a∗ =
∑
k

∂a

∂uk
Dk .

The order of function a is defined as the order of the differential operator

a∗ (i.e. the maximal power of D).

Using this notation the Lie bracket [G,H] on F can be written as

[G,H] = H∗(G)−G∗(H).



We denote a+
∗ the formally conjugated operator

a+
∗ =

∑
k

(−1)kDk ◦
∂a

∂uk
.

Definition 2. The Euler operator or the variational derivative of a ∈ F

is defined as

δa

δu
=
∑
k

(−1)kDk

(
∂a

∂uk

)
= a+

∗ (1) .

We say that a ∈ F is a total derivative if a ∈ Im(D), and Im(D) is defined
as the image D : F→ Im(D) of the derivation D.

If function a is a total derivative a = D(b), b ∈ F then the variational
derivative vanishes. Moreover the vanishing of the variational derivative
is almost a criteria that the function belongs to Im(D).

Theorem 1. [Gelfand, Manin, Shubin] For a ∈ F(u;D) the variational
derivative vanishes

δa

δu
= 0

if and only if a ∈ Im(D) + C.



Here we list some useful identities:

For any a, b, F ∈ F.

Db(a) = a∗(b) , (10)

D(a) = ∂xa+ a∗(u1) , (11)

Dt(a) = ∂ta+ a∗(F ) , (12)

(ab)∗ = ab∗+ ba∗ , (13)

(D(a))∗ = D ◦ a∗ = D(a∗) + a∗ ◦D , (14)

(Dt(a))∗ = Dt(a∗) + a∗ ◦ F∗ , (15)

(a∗(b))∗ = Db(a∗) + a∗ ◦ b∗ , (16)(
δa

δu

)
∗

=
(
δa

δu

)+

∗
, (17)

δ

δu
(Dt(a)) = Dt

(
δa

δu

)
+ F+

∗

(
δa

δu

)
. (18)

Here A ◦B denotes a composition of operators A and B.



Local symmetries and conservation laws.

Traditionally symmetries of equations are defined as transformations

which map solutions of the equation into solutions.

Suppose u is an arbitrary solution of equation

ut = F (t, x, u, u1, . . . , un) , F ∈ F . (19)

Let us consider an infinitesimal transformation

û = u+ τG(t, x, u, ... , um) , G ∈ F , (20)

which depends on a small parameter τ . We say that the transformation

(20) defines an infinitesimal symmetry of equation (19) and G is a

generator of the symmetry, if û satisfies equation

ût = F (t, x, û, ... , ûn) +O(τ2) .

If we substitute û (20) in (19) and request the cancellation of terms of

order τ , we get

Dt(G(t, x, u, ... , um)) = F∗(G(t, x, u, ... , um)) . (21)



Equivalent definitions of symmetry:

We say that G ∈ F is a generator of an infinitesimal symmetry (or simply
G is a symmetry) for equation ut = F , if

1. For any solution u of the equation ut = F (t, x, u, u1, . . .), function
û = u+ τG satisfies to ût = F (t, x, û, û1, . . .) +O(τ2). ⇔

2. Dt(G) = F∗(G) . ⇔

3. ∂G
∂t +G∗(F )− F∗(G) = 0. ⇔

4. Two evolutionary equations ut = F and uτ = G are compartible. ⇔

5. [Dt, DG] = 0.

In literature the equation uτ = G, which is compartible with ut = F , is
often called a symmetry of ut = F .



Suppose we have two symmetries DG and DH, then the commutator

[DG, DH] also commutes with Dt and D due to the Jacobi identity for

vector fields and therefore is a symmetry. A linear combination of sym-

metries with constant coefficients is a symmetry. In other words, in-

finitesimal symmetries of an equation form a Lie algebra over C, which

is a subalgebra of the Lie algebra of all evolutionary derivations.

Definition 3. Let G be a symmetry. The order of the differential orper-

ator G∗ is called the order of the symmetry G.

The new time τ in uτ = G plays role of a group parameter. In order

to find an one-parameter family u(x, t, τ) of solutions including a given

solution u(x, t) of the equation ut = F , we have to solve the equation

uτ = G with the initial data u(x, t,0) = u(x, t).



Example: For the KdV equation

ut = u3 + 6uu1

we have obvious symmetries with generators

G1 = u1, G3 = ut = u3 + 6uu1

of order 1 and 3 which correspond to the shifts in space and time.

Indeed,the corresponding evolutionary equations

uτ1 = u1, uτ3 = ut = u3 + 6uu1

can be easily integrated to a group action

û(x, t, τ1) = u(x+ τ1, t), û(x, t, τ3) = u(x, t+ τ3).

The Galileian and scaling transformations are generated by

Gg = 1 + 6tu1 , Gs = 2u+ xu1 + 3t(u3 + 6uu1).

Integration of the equation uτg = Gg leads to

û(x, t, τg) = u(x+ 6τgt, t) + τg.



There are infinitely many high order symmetries for the KdV equation,

which cannot be integrated to a group action explicitely. The first

nontrivial one has order 5 and is of the form

G5 = u5 + 10uu3 + 20u1u2 + 30u2u1 .

Example: For any m equation uτ = um is a symmetry for ut = un.

Example: The Burgers equation

ut = uxx + 2uux

has the following third order symmetry

uτ = uxxx + 3uuxx + 3u2
x + 3u2ux.

It is easy to verify that all these functions are indeed generators of

symmetries according the definitions given above.

(* symmetry reductions *)



Conservation laws.

The notion of first integrals, in contrast to symmetries, cannot be gen-

eralized to the case of PDEs. It is replaced by the concept of local

conservation laws, which are also related to constants of motion.

Definition. A function ρ ∈ F is called a density of a local conservation

law of an evolutionary equation if there exist a function σ ∈ F such that

Dt(ρ) = D(σ). (22)

The function σ is called a flux of the conservation law.

Example. Functions

ρ1 = u, ρ2 = u2, ρ3 = −u2
1 + 2u3

are conserved densities of the Korteweg - de Vries equation

ut = u3 + 6uu1.



Indeed,

Dt(u) = D(u2 + 3u2),

Dt(u
2) = D(2uu2 − u2

1 + 4u3),

Dt(ρ3) = D(9u4 + 6u2u2 + u2
2 − 12uu2

1 − 2u1u3) .

Function u3 is not a density of a conservation law for the Korteweg de

Vries equation. Indeed, Dt(u3) = 3u2u3+18u3u1. In order to check that

the right-hand side is not a total derivative we apply the Euler operator

δ

δu
(3u2u3 + 18u3u1) = −18u1u2 6= 0 .

If u is a function periodic in space variable x with period L, then

Ik =
∫L
0 ρk dx do not depend on time and are constants of motion.

Relation Dt(ρ) = D(σ) is evidently satisfied if ρ = D(h) for any h ∈ F.

In this case σ = Dt(h). Such ”conservation laws” we call trivial.



Definition. Two conserved densities ρ1, ρ2 are called equivalent ρ1 ∼ ρ2

if the difference ρ1 − ρ2 is a trivial density (i.e. ρ1 − ρ2 ∈ ImD).

Definition. The order ord(ρ) of a conserved density ρ is defined as the

order of the differential operator

R =
(
δρ

δu

)
∗
.

For trivial densities δρ/δu = 0 and therefore equivalent densities have

the same order. For example, densities ρ1 = u2
1 + u3 and ρ2 = −uu2 are

equivalent and ord(ρ1) = ord(ρ2) = 2.

A linear combination of conserved densities with constant coefficients is

also a conserved density. Therefore the set of conserved densities form

a linear space, actually a factor space over ImD.



Formal pseudo-differential series.

For further consideration we will need formal pseudo-differential series,

which for simplicity we shall call formal series (of order m = ordA)

A = amD
m + am−1D

m−1 + · · ·+ a0 + a−1D
−1 + a−2D

−2 + · · · ak ∈ F .

(23)

The product of two formal series is defined by

aDk◦bDm = a(bDm+k+C1
kD(b)Dk+m−1+C2

kD
2(b)Dk+m−2+ · · · ) , (24)

where k,m ∈ Z and C
j
n is the binomial coefficient

Cjn =
n(n− 1)(n− 2) · · · (n− j + 1)

j!
.

This product is associative.

The formally conjugated to (23) formal series A+ is defined as

A+ = (−1)mDm ◦ am + · · ·+ a0 −D−1 ◦ a−1 +D−2 ◦ a−2 + · · · .



Example: Let

A = uD2 + u1D, B = −u1D
3, C = uD−1

then

A+ = D2◦u−D◦u1 = A, B+ = D3◦u1 = u1D
3+3u2D

2+3u3D+u4 ,

C+ = −D−1 ◦ u = −uD−1 + u1D
−2 − u2D

−3 + · · · .

Formal series form a skew-field. For any element (23) we can find

uniquely the inverse element

B = b−mD
−m + b−m−1D

−m−1 + · · · , bk ∈ F

such that A ◦B = B ◦A = 1. Indeed, in A ◦B = 1

at D0 : amb−m = 1, ⇒ b−m = 1/am

at D−1 : mamD(b−m) + amb−m−1 + am−1b−m = 0

⇒ b−m−1 = −
am−1

a2
m
−mD(

1

am
), etc.



First k coefficients of the series B can be uniquely determined in terms

of the first k coefficients of A.

Moreover we can find the m-th root of the series A (23), i.e. a series

C = c1D + c0 + c−1D
−1 + c−2D

−2 + · · · , ck ∈ F

such that Cm = A. The series C is unique up to a constant factor

ω, ωm = 1. Coefficients of C can be found recursively.

Example: Let A = D2 + u. Assuming C = c1D + c0 + c−1D
−1 +

c−2D
−2 + · · · we get:

C2 = C ◦ C = (c1D + c0 + c−1D
−1 + · · · ) ◦ (c1D + c0 + c−1D

−1 + · · · ) =

c21D
2 + (c1D(c1) + c1c0 + c0c1)D + c1D(c0) + c20 + c1c−1 + c−1c1 + · · · ,

and compare the result with A. At D2 we find c21 = 1 or c1 = ±1. Let

we choose the positive root c1 = 1. Now at D we have 2c0 = 0, i.e.

c0 = 0. At D0 we have 2c−1 = u, at D−1 we find c−2 = −u1/4, etc.,

C = D +
u

2
D−1 −

u1

4
D−2 + · · · .

We can easily find as many coefficients of C as required.



Definition 4. The residue of a formal series A =
∑
k≤n akD

k, ak ∈ F is

the coefficient at D−1

res (A) = a−1 .

The logarithmic residue of A is defined as

res logA =
an−1

an
.

For any two formal series A,B of order n and m respectively the loga-

rithmic residue satisfies the following identity

res log(A ◦ B) = res log(A) + res log(B) + nD(log(bm)) .

For any derivation Dt of the field F and any formal series A we have

Dt( res log(A)) = res (Dt(A) ◦A−1) . (25)

Let C be the n-th root of A, i.e. Cn = A. We define a sequence

ρ−1 = resC−1, ρ0 = res logC, ρ1 = resC, . . . , ρk = resCk, . . . .

Then the first m elements of this sequence are in one-to-one correspon-

dence with the first m coefficients of C.



We will use the following important Adler’s Theorem

(M.Adler, Inventiones Math., 50, 219-248, 1979)

Theorem 2. For any two formal series A,B the residue of the commu-

tator belongs to Im(D):

res [A,B] = D(σ(A,B)), σ(A,B) ∈ F .

Proof: One can readily show that

σ(A,B) =
p+q+1>0∑

p≤ord(B), q≤ord(A)

Cp+q+1
q

p+q∑
s=0

(−1)sDs(aq)D
p+q−s(bp) .



Formal recursion operator

For simplicity here and in the sequel we assume that F = F(x, u;D), i.e.

the right-hand side of equation

ut = F (u, ... , un, x) , n ≥ 2 (26)

and also its symmetries and conservation laws do not depend on t ex-

plicitly.

Definition 5. A formal series

Λ = l1D + l0 + l−1D
−1 + · · · , lk ∈ F (27)

is called a formal recursion operator for equation (26) if it satisfies

equation

Dt(Λ)− [F∗, Λ] = 0 . (28)

Important Remark We will never consider Λ as an operator, i.e. we

will never act by Λ to any function. Relation (28) is regarded as an

infinite system of equations for the coefficients li.



Proposition 1. If Λ is a formal recursion operator for equation (26),

then any power Λ̂ = Λk also satisfy equation (28). In particular,

Λ̃ = c1Λ + c0 + c−1Λ−1 + c−2Λ−2 + · · ·

is a formal recursion operator for (26) for any ck ∈ C.

If Λ̂ is a psudo-differential operator satisfying equation (28) and its

action is properly defined on a symmetry generator G (i.e. Λ̂(G) ∈ F),

then H = Λ̂(G) is a generator of a symmetry.

Dt(H) = Dt(Λ̂G) = Dt(Λ̂)(G) + Λ̂Dt(G) =

= [F∗, Λ̂](G) + Λ̂F∗(G) = F∗Λ̂(G) = F∗(H).

In this case Λ is called a recursion operator.



Example. The Korteweg-de Vries equation ut = u3 + 6uu1 has a recur-

sion operator

Λ̂ = D2 + 4u+ 2u1D
−1 ,

which satisfies equation (28). The formal recursion operator for the

Korteweg -de Vries equation can be represented as Λ = Λ̂1/2. The

infinite hierarchy of commutative symmetries of KdV can be obtained

as

G2k+1 = Λ̂k(u1) .

Example: The Burgers equation ut = u2 + 2uu1 has the (formal) re-

cursion operator

Λ = D + u+ u1D
−1 .

Functions Gn = Λn(u1) are generators of symmetries of the Burgers

equation.



The concept of formal recursion operator is very universal in the theory
of integrable equations. A formal series Λ satisfying equation (28) exists
and the sequence of its coefficients l1, l0, ... ∈ F can be found explicitly
if equation (26) possesses an infinite hierarchy of symmetries or conser-
vation laws of arbitrary high order, or can be linearized by a differential
substitution.
Theorem 3. If equation ut = F, F ∈ F possesses an infinite hierarchy
of higher symmetries of infinitely increasing order then it has a formal
recursion operator.

The main idea of the proof of this Theorem and the relation between
the structure of the formal recursion operator and symmetries can be
illustrated by the following consideration. Suppose equation (26) has a
symmetry with a generator G. Function G satisfies equation (21). Let
us compute the Fréchet derivative from this equation. Using identities
(13),(15),(??) we get equation

Dt(G∗) +G∗F∗ = DG(F∗) + F∗G∗

which can be rearrange in the form

Dt(G∗)− [F∗, G∗] = DG(F∗) . (29)



Now let us assume that the order of equation (26) is fixed, say n = 3 (i.e.

F = F (u, u1, u2, u3, x) in (26)), and the symmetry G has a very high order

(say, for example, m = 125, i.e. G = G(u, u1, ... , u125, x)). Equation

(29) for operators (the Fréchet derivative is a differential operator) is

understood as equations for the coefficients of the operators at each

power Dk. In the right-hand side of equation (29) we have operator

DG(F∗) of order 3 (or less, if the leading coefficient of F∗ is a constant).

The product F∗G∗ in the left-hand side of the equation has the order

n+m = 3 + 125 = 128. It means that in first 128− 3 = 125 equations

the right-hand side does not contribute and first 124 terms of operator

G∗ satisfy the same equation (28) as the formal recursion operator Λ.

We can use G
1/125
∗ as an approximate for Λ or, more precisely,

Λ = (G∗)1/m + l̃−123D
−123 + l̃−124D

−124 + · · · . (30)

If equation (26) has an infinite hierarchy of symmetries Gs and the order

of symmetries is going to infinity as s→∞ then one can show that there

exist a formal series Λ, such that equation (28) is satisfied at any order

Dk , k = n, n−1, ... ,0,−1, ... . That is the basic idea for the proof of the

Theorem.


