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Dynamical point of view:

A.P. Veselov Yang-Baxter maps and integrable dynamics. Physics Letters A,
314 (2003), 214-221.
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Important consequence: Transfer-matrices T(\) = troRon . . . Ron commute:

T T (1) = T()T(A)
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Figure: Reversibility
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One can consider also the parameter-dependent Yang-Baxter maps R(), i)
with A, u from some parameter set A, satisfying

Ri2(A1, A2) Riz(A1, A3)Raz(A2, Az) = Raz(A2, Az)Riz(A1, Az)Riz( A1, A2)
and reversibility condition
Rar(p, A)R(A, p) = Id.
Although this case can be considered as a particular case of the previous one by

introducing X = X x A and R(x, Ay, 1) = R(\, p)(x, y) it is often convenient
to keep the parameter separately.
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Example 1: Interaction of matrix solitons

Matrix KdV equation
U + 30U +3UU+ U =0
has the soliton solution of the form
U = 2)X%P sech’(Ax — 4X*t),
where " polarisation” P must be a projector: P> = P.
The change of polarisations P after the soliton interaction is non-trivial:

2o
AL — A2
21
X2 — A1
where L is the image of P (Goncharenko, AV (2003)).
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Tsuchida (2004), Ablowitz, Prinari, Trubatch (2004): vector NLS equation
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Example 2: KdV and Adler map

Darboux transformation

d2

T
d d

A.B.Shabat, A.V. (1993): perlodic dressing chain

(f+fin) = —f+a,i=1,...,2m+1.
V. Adler (1993): symmetry of dressing chain

= 61— B2
fi=f—
TR A+ p

= B2 — 1
h="f—
T A+ p
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Transfer dynamics

Define the transfer maps

T X" - X" i=1,...,n
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where the indices are considered modulo n. In particular
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Transfer dynamics

Define the transfer maps

T . X" & X" i=1,...,n

i

by
T,-(") = Riitn-1Riitn—2 ... Rit1,

where the indices are considered modulo n. In particular
T = RiyRip 1. .. Ris.

For any reversible Yang-Baxter map R the transfer maps T,.(") commute with
each other:
and satisfy the property

TOT LT = id.

Conversely, if T,.(") satisfy these properties then R is a reversible YB map.



Commutativity of the transfer maps

Figure: Commutativity of the transfer maps



Recutting of polygons: dynamics
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Lax matrices and matrix factorisations

Matrix A(x, A, ¢) with spectral parameter ¢ € C is called Lax matrix of the
map R if it satisfies the relation
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Lax matrices and matrix factorisations

Matrix A(x, A, ¢) with spectral parameter ¢ € C is called Lax matrix of the
map R if it satisfies the relation

Al A QA(Y, i €) = A(Y, i QAKX X; €),
whenever (%X,7) = R(\, p)(x,y).
Define monodromy matrix
M = A(xn, Aoy O)A(Xn—1, An—1,¢) . . . A(x1, A1, €).

The transfer maps T,-(") preserve the spectrum of M for all {. The coefficients
of the characteristic polynomial

x = det(M(x, X, ¢) — pul)

are the integrals of the transfer-dynamics.



Lax matrix from Yang-Baxter map

Suris, AV (2003):
Suppose that the Yang-Baxter map R(\, i) has the following special form:

X = (y Ly )[X] }7 = A(X’ A7/1’)[.)/]

for some action of GL(N) on X. Then both A(x, \,¢) and BT (x, ), {) are Lax
matrices for R.
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Suris, AV (2003):
Suppose that the Yang-Baxter map R(\, i) has the following special form:

X = (y Ly )[X] }7 = A(X’ A7/1’)[.)/]

for some action of GL(N) on X. Then both A(x, \,¢) and BT (x, ), {) are Lax
matrices for R.

X X
Z12 Z12
n
y Y13
X2 Z1
= 22 X3
y Y13
y3

z X23 z X23

Indeed, LHS gives z1o = A(y1, i, v)A(x2, A\, v)[z], while the RHS gives
212 = A(x, A\, V)A(y, p, v)[2].



Example: Lax matrix for Adler map

For Adler map

we can write

P b W S . el (L)
Xty Xty

= A(x, A, )yl
so we come to the Lax matrix

A=(5 )

(which was actually known from the theory of the dressing chain).



Close relative: integrable discrete equations

Bianchi (1880s):
Superposition of Backlund transformations:

v — 1%

l !

V2 — V12



Close relative: integrable discrete equations

Bianchi (1880s):
Superposition of Backlund transformations:

v — 1%

l !

V2 — V12

Bianchi's important observation was the results of these commuting
transformations satisfy an algebraic relation.



Close relative: integrable discrete equations

Bianchi (1880s):
Superposition of Backlund transformations:

v — 1%

l !

V2 — V12

Bianchi's important observation was the results of these commuting
transformations satisfy an algebraic relation.
In KdV case the Darboux transformations satisfy

(viz = v)(vi — v2) = 1 — fo,

which is the discrete KdV equation.



Discrete integrability: 3D consistency condition

Bianchi (1880s), Tsarev (1990s), Doliwa and Santini (1997), Bobenko and
Suris, Nijhoff (2001): 3D consistency as the definition of integrability.



Yang-Baxter versus 3D consistency condition
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Figure: “Cubic” representation of the Yang—Baxter relation
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Papageorgiou, Tongas, AV (2006): symmetry approach
Discrete KdV equation

(vie = v)(vi —wv2) =51 — 3
is invariant under the translation v — v + const.

The invariants
X1 =VvVi—V, Xx2x=Vi2—Vi, Y1i=Vip2— V2, Y2=V2—V,

satisfy the relation
x1+x2=y1+y2

and the equation itself:
(x1 + x2)(x1 — yo) = B1 — fa.

This leads to the following YB map

ﬁl 052 a; — B2
=x1 - —,
= 2 X1 +X2 2 ! X1 —|—X2

which is nothing else but the Adler map.



Hamiltonian structures: Poisson Lie groups

Weinstein and Xu (1992), Reshetikhin, AV (2005)

Suppose that X can be embedded as a symplectic leaf in a Poisson Lie group
G: ¢» : X — G and define the correspondence R(\, i) : X x X — X x X by
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Hamiltonian structures: Poisson Lie groups

Weinstein and Xu (1992), Reshetikhin, AV (2005)

Suppose that X can be embedded as a symplectic leaf in a Poisson Lie group
G: ¢» : X — G and define the correspondence R(\, i) : X x X — X x X by
the relation

oA(X)Pu(y) = ¢u(§)eA(X).
Define the symplectic structure QM on XMV as

Q(N) =wx Dwr, D ... @WAN.

Then R(), ) is a reversible Yang-Baxter Poisson correspondence and transfer
dynamics is Poisson with respect to Q.



Other relations: "box-ball” systems, geometric crystals

Hatayama, Hikami, Inoue, Kuniba, Noumi, Okado, Takagi, Tokihiro,
Yamada (2000-): Takahashi-Satsuma "box-ball” systems and Kashiwara’s
crystal theory

Berenstein, Kazhdan (2000), Etingof (2001): geometric crystals
Yang-Baxter map:

R:XxX—=XxX, X=C¢C"

: P, P
X = xj ——, =y , =1,...,n,
G TP Yi=Yi P; J

where
n a—1 n
Pr=2_ | IIwee TT v ) -
a=1 k=1 k=a+1

with the subscripts j + k taken modulo n.



Classification

Adler, Bobenko, Suris (2004):

Quadrirational case, X = CP!

v=ayp, v, P gl R ey O
u=2Pp, V—%P, P:w, (2)
u:éP, V:%P, Pzaj%fy, (3)
u=yP, v=xP, P=14+0-9 (4)
u=y+P, v=xtpP, P=2"0 (5)

X=y



Geometric interpretation

Figure: A quadrirational map on a pair of conics






Yang-Baxter property = Geometric theorem

Konopelchenko, Schief (2001): Menelaus’ theorem, Clifford configurations
and discrete KP hierarchy.



Additional H-families

Papageorgiou, Suris, Tongas, V (2009):

(1=B)xy + (B - )y +B(a—1)

u=yQ7 v=xQ Q=g e D) O
u=yQ7h, v=xQ, o:giggjggi:fz, (7)
u=Yo, v=%0 ozo‘iify, (8)
=y v=xe Q=X (9)
u=y—P, v=x+P, P:i‘;f. (10)

The last map is the Adler map.
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Some open questions

> Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)
> Soliton interaction = Integrable hierarchy

Adler map = KdV hierarchy: S.P. Novikov (1974), Shabat, AV (1993)
> Alternative transfer-dynamics

Papageorgiou, AV: transfer KdV correspondences

» Discrete hierarchies and tropicalization

Kakei, Nimmo, Willox (2008)
Inoue, Takenawa (2008): tropical algebraic geometry



