
NLEVP: A Collection of Nonlinear Eigenvalue Problems.

Users’ Guide.

Timo Betcke∗ Nicholas J. Higham† Volker Mehrmann‡

Christian Schröder‡ Françoise Tisseur†

December 22, 2011

Abstract

This is the Users’ Guide for NLEVP: a collection of nonlinear eigenvalue problems pro-
vided in the form of a MATLAB toolbox. A separate paper describes the collection and its
organization.

1 Introduction

This document describes how to install and use the NLEVP MATLAB toolbox, which provides a
collection of nonlinear eigenvalue problems.

For details of the design and organization of the collection, and the problems it contains, see
[1].

This document describes 3.0 of the toolbox. The collection will grow and contributions are
welcome (see Section 6).

2 Installation and Usage

The collection is available from

http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html

It is provided as both a zip file and a tar file. To install the toolbox create the directory nlevp in a
suitable location and make it the current directory. Download nlevp.zip or nlevp.tar into this
directory. Then use appropriate “unzip” software (making sure to preserve the directory structure)
or type tar xvf nlevp.tar. This creates the subdirectory private. Put the nlevp directory on
the MATLAB path, which can be done using the addpath command (ideally in startup.m). If
you are using GNU Octave then you must also put the nlevp/private directory on the path.

To try the toolbox, run the demonstration script by typing nlevp_example at the MATLAB
command prompt. Then execute the following commands:

help nlevp

nlevp query problems

∗Department of Mathematics, University College London, WC1E 6BT, UK (t.betcke@ucl.ac.uk). The work
of this author was supported by Engineering and Physical Sciences Research Council Grant EP/H004009/1.
†School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

({higham,ftisseur}@ma.man.ac.uk). This work of these authors was supported by Engineering and Physi-
cal Sciences Research Council grant EP/D079403/1. The work of the second author was also supported by a
Royal Society-Wolfson Research Merit Award and Engineering and Physical Sciences Research Council grant
EP/E050441/1 (CICADA: Centre for Interdisciplinary Computational and Dynamical Analysis) and the work of
the fifth author was also supported by a Leverhulme Research Fellowship and Engineering and Physical Sciences
Research Council grant EP/I005293/1.
‡Institut für Mathematik, MA 4-5, Technische Universität Berlin, Germany

({mehrmann,schroed}@math.tu-berlin.de). Supported by Deutsche Forschungsgemeinschaft through Math-
eon, the DFG Research Center Mathematics for key technologies in Berlin.

1

nlevp query properties

nlevp help railtrack

nlevp query railtrack

coeffs = nlevp(’railtrack’)

spy(coeffs{2})

coeffs = nlevp(’bicycle’)

polyeig(coeffs{:})

The collection has been tested in MATLAB versions 7.1 (R14) up to R2011b. It does not
work with versions 6.5 (R13) and earlier of MATLAB, since it uses functionality introduced in
MATLAB 7.0 (R14).

3 Release History

3.1 First Release, 1.0

The first release of the toolbox was version 1.0, dated 4-Apr-2008, and contained 26 problems.

3.2 Second Release, 2.0

The second release, version 2.0, was dated 15-Nov-2010, contained 46 problems, and had the
following changes:

• Problem string has been renamed spring. spring has been generalized to include more
parameters but is backward compatible with string. Invoking nlevp(’string’) still works:
it invokes nlevp(’spring’) and produces a warning message.

• The matrices generated by problems acoustic wave 1d and acoustic wave 2d have been
modified in order to more closely match the formulation in the paper from which this problem
is taken. The eigenvalues now lie in the upper half-plane instead of the left half-plane.

• New problems are: fiber, foundation, genhyper2, Hadeler, intersection, metal strip,
pdde stability, plasma drift, omnicam1, omnicam2, qep1, qep2, qep3, qep4, railtrack2,
relative pose 5pt, relative pose 6pt, shaft, speaker box, surveillance.

• New functionality: nlevp(’eval’,...) and [coeffs,fun] = nlevp(’name’,...).

• Automatic testing of problem properties via nlevp_test.

• Cosmetic changes have been made to some of the functions.

• Citations to the sources of the problems have been updated, where necessary.

3.3 Third Release, 3.0

The third release, version 3.0, is dated 22-Dec-2011, contains 52 problems, and has the following
changes:

• New problems gen tantipal2, gen tpal2, mirror, planar waveguide, qep5, time delay.

• For scalable problems the first dimension parameter now specifies the size, n, of the coefficient
matrices (or an approximation to it). Previously, n was a function of this parameter in some
cases. It is now possible to generate all scalable problems of a given size (or approximately
that size). A warning message, with identifier NLEVP:truescale, is printed when the affected
problems are called.

• Scalable problems now return coefficient matrices in the MATLAB sparse format when the
coefficient matrices are sparse.

2

• A new problem property random has been introduced to specify problems that use random
numbers in their construction. Such problems include an optional input argument that
is used to seed the random number generator, which is useful for generating a repeatable
sequence of problem instances. If that optional input argument is not provided then the
same (fixed) problem is generated each time, while an argument ’noseed’ ensures that the
random number generator is not seeded. A random number seed argument has been added to
gen hyper and may result in different matrices being generated than with previous versions
of NLEVP. All problems with the random property can use either the old or new (rng)
MATLAB syntax for seeding the random number generator, as chosen through an input
argument.

• dirac has been vectorized. The coefficients may differ at the level of rounding error from
those produced by the previous, unvectorized code.

• The first two input arguments of spring dashpot have been interchanged, so that the first
is the dimension.

• A bug in the computation of the derivatives of the gun problem has been corrected.

• This release is compatible with GNU Octave [2], as far as possible. It has been tested with
Octave 3.2.4 under Windows and Octave 3.4.3 under Linux. Since Octave does not have a
function polyeig the function nlevp example will not run.

4 The MATLAB Function nlevp

The toolbox has just one main user-callable function, nlevp, which is as follows.

function varargout = nlevp(name,varargin)

%NLEVP Collection of nonlinear eigenvalue problems.

% [COEFFS,FUN,OUT3,OUT4,...] = NLEVP(NAME,ARG1,ARG2,...)

% generates the matrices and functions defining the problem specified by

% NAME (a case insensitive string).

% ARG1, ARG2,... are problem-specific input arguments.

% All problems are of the form

% T(lambda)*x = 0

% where

% T(lambda)= f0(lambda)*A0 + f1(lambda)*A1 + ... + fk(lambda)*Ak.

% The matrices A0, A1, ..., Ak are returned in a cell array:

% COEFFS = {A0,...,Ak}.

% FUN is a function handle that can be used to evaluate the functions

% f1(lambda),...,fk(lambda). For a scalar lambda,

% F = FUN(lambda) returns a row vector containing

% F = [f1(lambda), f2(lambda), ..., fk(lambda)].

% If lambda is a column vector, FUN(lambda) returns a row per element in

% lambda.

% [F,FP] = FUN(lambda) also returns the derivatives

% FP = [f1’(lambda), f2’(lambda), ..., fk’(lambda)].

% [F,FP,FPP,FPPP,...] = FUN(lambda) also returns higher derivatives.

% OUT3, OUT4, ... are additional problem-specific output arguments.

% See the list below for the available problems.

%

% PROBLEMS = NLEVP(’query’,’problems’) or NLEVP QUERY PROBLEMS

% returns a cell array containing the names of all problems

% in the collection.

% NLEVP(’help’,’name’) or NLEVP HELP NAME

% gives additional information on problem NAME, including number and

% meaning of input/output arguments.

% NLEVP(’query’,’name’) or NLEVP QUERY NAME

3

% returns a cell array containing the properties of the problem NAME.

% PROPERTIES = NLEVP(’query’,’properties’) or NLEVP QUERY PROPERTIES

% returns the properties used to classify problems in the collection.

% NLEVP(’query’,property1,property2,...) or NLEVP QUERY PROPERTY1 ...

% lists the names of all problems having all the specified properties.

%

% [T,TP,TPP,...] = NLEVP(’eval’,NAME,LAMBDA,ARG1,ARG2,...)

% evaluates the matrix function T and its derivatives TP, TPP,...

% for problem NAME at the scalar LAMBDA.

%

% NLEVP(’version’) or NLEVP VERSION

% prints version, release date, and number of problems

% of the installed NLEVP collection.

% V = NLEVP(’version’)

% returns a structure V containing version information.

% V consists of the fields v.number, v.date, and v.problemcount.

%

% Available problems:

%

% acoustic_wave_1d Acoustic wave problem in 1 dimension.

% acoustic_wave_2d Acoustic wave problem in 2 dimensions.

% bicycle 2-by-2 QEP from the Whipple bicycle model.

% bilby 5-by-5 QEP from Bilby population model.

% butterfly Quartic matrix polynomial with T-even structure.

% cd_player QEP from model of CD player.

% closed_loop 2-by-2 QEP associated with closed-loop control system.

% concrete Sparse QEP from model of a concrete structure.

% damped_beam QEP from simply supported beam damped in the middle.

% dirac QEP from Dirac operator.

% fiber NEP from fiber optic design.

% foundation Sparse QEP from model of machine foundations.

% gen_hyper2 Hyperbolic QEP constructed from prescribed eigenpairs.

% gen_tpal2 T-palindromic QEP with prescribed eigenvalues on the

% unit circle.

% gen_tantipal2 T-anti-palindromic QEP with eigenvalues on the unit

% circle.

% gun NEP from model of a radio-frequency gun cavity.

% hadeler NEP due to Hadeler.

% hospital QEP from model of Los Angeles Hospital building.

% intersection 10-by-10 QEP from intersection of three surfaces.

% loaded_string REP from finite element model of a loaded vibrating

% string.

% metal_strip QEP related to stability of electronic model of metal

% strip.

% mirror Quartic PEP from calibration of cadioptric vision system.

% mobile_manipulator QEP from model of 2-dimensional 3-link mobile manipulator.

% omnicam1 9-by-9 QEP from model of omnidirectional camera.

% omnicam2 15-by-15 QEP from model of omnidirectional camera.

% orr_sommerfeld Quartic PEP arising from Orr-Sommerfeld equation.

% pdde_stability QEP from stability analysis of discretized PDDE.

% planar_waveguide Quartic PEP from planar waveguide.

% plasma_drift Cubic PEP arising in Tokamak reactor design.

% power_plant 8-by-8 QEP from simplified nuclear power plant problem.

% QEP1 3-by-3 QEP with known eigensystem.

% QEP2 3-by-3 QEP with known, nontrivial Jordan structure.

% QEP3 3-by-3 parametrized QEP with known eigensystem.

% QEP4 3-by-4 QEP with known, nontrivial Jordan structure.

4

% QEP5 3-by-3 nonregular QEP with known Smith form.

% railtrack QEP from study of vibration of rail tracks.

% railtrack2 Palindromic QEP from model of rail tracks.

% relative_pose_5pt Cubic PEP from relative pose problem in computer vision.

% relative_pose_6pt QEP from relative pose problem in computer vision.

% schrodinger QEP from Schrodinger operator.

% shaft QEP from model of a shaft on bearing supports with a

% damper.

% sign1 QEP from rank-1 perturbation of sign operator.

% sign2 QEP from rank-1 perturbation of 2*sin(x) + sign(x)

% operator.

% sleeper QEP modelling a railtrack resting on sleepers.

% speaker_box QEP from finite element model of speaker box.

% spring QEP from finite element model of damped mass-spring

% system.

% spring_dashpot QEP from model of spring/dashpot configuration.

% time_delay 3-by-3 NEP from time-delay system.

% surveillance 27-by-20 QEP from surveillance camera callibration.

% wing 3-by-3 QEP from analysis of oscillations of a wing in

% an airstream.

% wiresaw1 Gyroscopic system from vibration analysis of wiresaw.

% wiresaw2 QEP from vibration analysis of wiresaw with viscous

% damping.

%

% Examples:

% coeffs = nlevp(’railtrack’)

% generates the matrices defining the railtrack problem.

% nlevp(’help’,’railtrack’)

% prints the help text of the railtrack problem.

% nlevp(’query’,’railtrack’)

% prints the properties of the railtrack problem.

%

% For example code to solve all polynomial eigenvalue problems (PEPs)

% in this collection of dimension < 500 with MATLAB’s POLYEIG

% see NLEVP_EXAMPLE.M.

% Reference:

% T. Betcke, N. J. Higham, V. Mehrmann, C. Schroeder, and F. Tisseur.

% NLEVP: A Collection of Nonlinear Eigenvalue Problems,

% MIMS EPrint 2011.116, Manchester Institute for Mathematical Sciences,

% The University of Manchester, UK, 2011

% Check inputs

if nargin < 1, error(’Not enough input arguments’); end

if ~ischar(name), error(’NAME must be a string’); end

name = lower(name);

if strcmp(name,’query’)

if nargin == 1

error(’Not enough input arguments’)

end

[varargout{1:nargout}] = nlevp_query(varargin{:});

return

end

if strcmp(’string’,name)

5

name = ’spring’;

warning(’NLEVP:string_renamed’,’Problem string has been renamed spring.’)

end

if strcmp(’version’,name)

[varargout{1:nargout}] = nlevp_version(varargin{:});

return

end

switch name

case ’help’

if nargin < 2

help nlevp

else

if ~nlevp_isoctave

help(varargin{1})

else

% Uglier code necessary for Octave.

eval([’help ’, varargin{1}]);

end

end

case ’eval’

[varargout{1:max(nargout,1)}] = nlevp_eval(varargin{:});

otherwise

[varargout{1:nargout}] = feval(name,varargin{:});

end

5 The MATLAB Function nlevp example

The toolbox contains a function nlevp_example.m that illustrates the use of nlevp. Running it
provides a quick test that the toolbox is correctly installed. This function can be adapted in order
to test the user’s own methods on subsets of NLEVP problems.

function nlevp_example(fname)

%NLEVP_EXAMPLE Run POLYEIG on PEP problems from NLEVP.

% NLEVP_EXAMPLE solves all the not-too-large PEP problems in NLEVP

% by POLYEIG, sending output to the screen.

% NLEVP_EXAMPLE(fname) directs partial output to the file named fname

% (intended for generating output for NLEVP paper).

if nargin == 0

fid = 1;

else

fid = fopen(fname,’w’);

end

s_rand = warning(’off’, ’NLEVP:random’); % For gen_hyper2.

nmax = 500;

probs = nlevp(’query’,’pep’);

nprobs = length(probs);

nprobs_total = length(nlevp(’query’,’problems’));

fprintf(fid,’NLEVP contains %2.0f problems in total,\n’, nprobs_total);

fprintf(fid,’of which %2.0f are polynomial eigenvalue problems (PEPs).\n’, nprobs);

fprintf(fid,’Run POLYEIG on the PEP problems of dimension at most %2.0f:\n\n’,nmax);

fprintf(fid,’ Problem Dim Max and min magnitude of eigenvalues\n’);

6

fprintf(fid,’ ------- --- ------------------------------------\n’);

m = ceil(nprobs/4);

j = 1;

for i=1:nprobs

if fid ~= 1 && i == 9

fprintf(fid,’ ...\n’);

fid_save = fid;

fid = 1; % Omit output from this point on when writing to file.

end

coeffs = nlevp(probs{i});

[n, nc] = size(coeffs{1});

if n >= nmax

fprintf(fid,’%20s %3.0f is a PEP but is too large for this test.\n’, ...

probs{i}, n);

elseif n ~= nc

fprintf(fid,’%20s %3.0f is a PEP but is nonsquare.\n’, probs{i}, n);

else

% POLYEIG will convert sparse input matrices to full.

e = polyeig(coeffs{:});

fprintf(fid,’%20s %3.0f %9.2e, %9.2e\n’, ...

probs{i}, n, max(abs(e)), min(abs(e)));

subplot(m,4,j)

plot(real(e), imag(e),’.’)

title(probs{i},’Interpreter’,’none’)

% Tweaks.

if strcmp(probs{i},’sign1’), ylim([-1 1]*1.5), end

if strcmp(probs{i},’damped_beam’)

title([’ ’ probs{i}],’Interpreter’,’none’)

end

if strcmp(probs{i},’relative_pose_6pt’)

title([’ ’ probs{i}],’Interpreter’,’none’)

end

if strcmp(probs{i},’speaker_box’) || strcmp(probs{i},’intersection’)

title([’ ’ probs{i}],’Interpreter’,’none’)

end

j = j+1;

end

end

if nargin > 0, fclose(fid_save); end

warning(s_rand)

Part of the output of the function is shown in [1].

6 Contributing to the Collection

Contributions of suggested new problems for the collection are welcome. They can be sent to any
of the authors. The following rules should be followed when providing new problems.

Write a LATEX file called problem name.tex, where problem name is the proposed name of your
example, describing the problem. Here, problem_name should be a string in lower case without
any spaces. The tex file should consist of a problem environment, with first line stating the
relevant identifiers for the problem (these properties are listed by nlevp query properties, and
are explained in the companion document [1]):

\begin{problem}{problem_name}{identifier1,identifier2,...}

This is a xxx-problem of dimension nnn.

7

It arises in ...

\end{problem}

Provide your citations in a bib file; one bib file suffices even if multiple tex files are provided.
Write an M-file generating the coefficients of the example called problem_name.m. Document

the M-file in the leading comment lines with the most important information from the tex file. If
the problem is parameter dependent, set default values for any parameters not specified when the
function is called. If you need extra data files, their names should begin with problem_name, e.g.,
problem_name.mat.

To specify a polynomial problem the first output of the M-file should be a cell array containing
the coefficient matrices starting with the constant term. Thus if the first output is called coeffs

and you want to define a PEP P (λ) =
∑k

i=0 λ
iAi, then coeffs{1}=A0, coeffs{2}=A1, . . . ,

coeffs{k+1}=Ak.
The second output argument must be a function that computes the nonlinear scalar functions

in the definition of the problem and their derivatives; for a polynomial eigenvalue problem this is
trivially provided by a line of the form

fun = @(lam) nlevp_monomials(lam,k);

Here, nlevp_monomials.m is a function provided with NLEVP in the private directory.
If a supposed solution is provided it should be returned in a structure sol with the following

format:

sol.eval: an m× 1 vector, where m eigenvalues are provided,

sol.evec: an m × n matrix, where column j is the eigenvector corresponding to
sol.eval(j).

If both left and right eigenvectors are known, they should be returned in sol.evec_left and
sol.evec_right.

References

[1] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection of
nonlinear eigenvalue problems. MIMS EPrint 2011.116, Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, Dec. 2011. 27 pp.

[2] GNU Octave. http://www.octave.org.

8

